gopdf/fpdf.go

5022 lines
147 KiB
Go
Raw Normal View History

2021-03-02 13:27:45 +01:00
/*
* Copyright (c) 2013-2014 Kurt Jung (Gmail: kurt.w.jung)
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package gofpdf
// Version: 1.7
// Date: 2011-06-18
// Author: Olivier PLATHEY
// Port to Go: Kurt Jung, 2013-07-15
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"image"
"image/color"
"image/gif"
"image/jpeg"
"image/png"
"io"
"io/ioutil"
"math"
"os"
"path"
"sort"
"strconv"
"strings"
"time"
)
var gl struct {
catalogSort bool
noCompress bool // Initial zero value indicates compression
creationDate time.Time
modDate time.Time
}
type fmtBuffer struct {
bytes.Buffer
}
func (b *fmtBuffer) printf(fmtStr string, args ...interface{}) {
b.Buffer.WriteString(fmt.Sprintf(fmtStr, args...))
}
func fpdfNew(orientationStr, unitStr, sizeStr, fontDirStr string, size SizeType) (f *Fpdf) {
f = new(Fpdf)
if orientationStr == "" {
orientationStr = "p"
} else {
orientationStr = strings.ToLower(orientationStr)
}
if unitStr == "" {
unitStr = "mm"
}
2021-03-02 15:39:29 +01:00
2021-03-02 13:27:45 +01:00
if sizeStr == "" {
sizeStr = "A4"
}
if fontDirStr == "" {
fontDirStr = "."
}
f.page = 0
f.n = 2
f.pages = make([]*bytes.Buffer, 0, 8)
f.pages = append(f.pages, bytes.NewBufferString("")) // pages[0] is unused (1-based)
f.pageSizes = make(map[int]SizeType)
f.pageBoxes = make(map[int]map[string]PageBox)
f.defPageBoxes = make(map[string]PageBox)
f.state = 0
f.fonts = make(map[string]fontDefType)
f.fontFiles = make(map[string]fontFileType)
f.diffs = make([]string, 0, 8)
f.templates = make(map[string]Template)
f.templateObjects = make(map[string]int)
f.importedObjs = make(map[string][]byte, 0)
f.importedObjPos = make(map[string]map[int]string, 0)
f.importedTplObjs = make(map[string]string)
f.importedTplIDs = make(map[string]int, 0)
f.images = make(map[string]*ImageInfoType)
f.pageLinks = make([][]linkType, 0, 8)
f.pageLinks = append(f.pageLinks, make([]linkType, 0, 0)) // pageLinks[0] is unused (1-based)
f.links = make([]intLinkType, 0, 8)
f.links = append(f.links, intLinkType{}) // links[0] is unused (1-based)
f.pageAttachments = make([][]annotationAttach, 0, 8)
f.pageAttachments = append(f.pageAttachments, []annotationAttach{}) //
f.aliasMap = make(map[string]string)
f.inHeader = false
f.inFooter = false
f.lasth = 0
f.fontFamily = ""
f.fontStyle = ""
f.SetFontSize(12)
f.underline = false
f.strikeout = false
f.setDrawColor(0, 0, 0)
f.setFillColor(0, 0, 0)
f.setTextColor(0, 0, 0)
f.colorFlag = false
f.ws = 0
f.fontpath = fontDirStr
// Core fonts
f.coreFonts = map[string]bool{
"courier": true,
"helvetica": true,
"times": true,
"symbol": true,
"zapfdingbats": true,
}
// Scale factor
switch unitStr {
case "pt", "point":
f.k = 1.0
case "mm":
f.k = 72.0 / 25.4
case "cm":
f.k = 72.0 / 2.54
case "in", "inch":
f.k = 72.0
default:
f.err = fmt.Errorf("incorrect unit %s", unitStr)
return
}
f.unitStr = unitStr
// Page sizes
f.stdPageSizes = make(map[string]SizeType)
f.stdPageSizes["a3"] = SizeType{841.89, 1190.55}
f.stdPageSizes["a4"] = SizeType{595.28, 841.89}
f.stdPageSizes["a5"] = SizeType{420.94, 595.28}
f.stdPageSizes["a6"] = SizeType{297.64, 420.94}
f.stdPageSizes["a2"] = SizeType{1190.55, 1683.78}
f.stdPageSizes["a1"] = SizeType{1683.78, 2383.94}
f.stdPageSizes["letter"] = SizeType{612, 792}
f.stdPageSizes["legal"] = SizeType{612, 1008}
f.stdPageSizes["tabloid"] = SizeType{792, 1224}
if size.Wd > 0 && size.Ht > 0 {
f.defPageSize = size
} else {
f.defPageSize = f.getpagesizestr(sizeStr)
if f.err != nil {
return
}
}
f.curPageSize = f.defPageSize
// Page orientation
switch orientationStr {
case "p", "portrait":
f.defOrientation = "P"
f.w = f.defPageSize.Wd
f.h = f.defPageSize.Ht
// dbg("Assign h: %8.2f", f.h)
case "l", "landscape":
f.defOrientation = "L"
f.w = f.defPageSize.Ht
f.h = f.defPageSize.Wd
default:
f.err = fmt.Errorf("incorrect orientation: %s", orientationStr)
return
}
f.curOrientation = f.defOrientation
f.wPt = f.w * f.k
f.hPt = f.h * f.k
// Page margins (1 cm)
margin := 28.35 / f.k
f.SetMargins(margin, margin, margin)
// Interior cell margin (1 mm)
f.cMargin = margin / 10
// Line width (0.2 mm)
f.lineWidth = 0.567 / f.k
// Automatic page break
f.SetAutoPageBreak(true, 2*margin)
// Default display mode
f.SetDisplayMode("default", "default")
if f.err != nil {
return
}
f.acceptPageBreak = func() bool {
return f.autoPageBreak
}
// Enable compression
f.SetCompression(!gl.noCompress)
f.spotColorMap = make(map[string]spotColorType)
f.blendList = make([]blendModeType, 0, 8)
f.blendList = append(f.blendList, blendModeType{}) // blendList[0] is unused (1-based)
f.blendMap = make(map[string]int)
f.blendMode = "Normal"
f.alpha = 1
f.gradientList = make([]gradientType, 0, 8)
f.gradientList = append(f.gradientList, gradientType{}) // gradientList[0] is unused
// Set default PDF version number
f.pdfVersion = "1.3"
f.SetProducer("FPDF "+cnFpdfVersion, true)
f.layerInit()
f.catalogSort = gl.catalogSort
f.creationDate = gl.creationDate
f.modDate = gl.modDate
f.userUnderlineThickness = 1
return
}
// NewCustom returns a pointer to a new Fpdf instance. Its methods are
// subsequently called to produce a single PDF document. NewCustom() is an
// alternative to New() that provides additional customization. The PageSize()
// example demonstrates this method.
func NewCustom(init *InitType) (f *Fpdf) {
return fpdfNew(init.OrientationStr, init.UnitStr, init.SizeStr, init.FontDirStr, init.Size)
}
// New returns a pointer to a new Fpdf instance. Its methods are subsequently
// called to produce a single PDF document.
//
// orientationStr specifies the default page orientation. For portrait mode,
// specify "P" or "Portrait". For landscape mode, specify "L" or "Landscape".
// An empty string will be replaced with "P".
//
// unitStr specifies the unit of length used in size parameters for elements
// other than fonts, which are always measured in points. Specify "pt" for
// point, "mm" for millimeter, "cm" for centimeter, or "in" for inch. An empty
// string will be replaced with "mm".
//
// sizeStr specifies the page size. Acceptable values are "A3", "A4", "A5",
// "Letter", "Legal", or "Tabloid". An empty string will be replaced with "A4".
//
// fontDirStr specifies the file system location in which font resources will
// be found. An empty string is replaced with ".". This argument only needs to
// reference an actual directory if a font other than one of the core
// fonts is used. The core fonts are "courier", "helvetica" (also called
// "arial"), "times", and "zapfdingbats" (also called "symbol").
func New(orientationStr, unitStr, sizeStr, fontDirStr string) (f *Fpdf) {
return fpdfNew(orientationStr, unitStr, sizeStr, fontDirStr, SizeType{0, 0})
}
// Ok returns true if no processing errors have occurred.
func (f *Fpdf) Ok() bool {
return f.err == nil
}
// Err returns true if a processing error has occurred.
func (f *Fpdf) Err() bool {
return f.err != nil
}
// ClearError unsets the internal Fpdf error. This method should be used with
// care, as an internal error condition usually indicates an unrecoverable
// problem with the generation of a document. It is intended to deal with cases
// in which an error is used to select an alternate form of the document.
func (f *Fpdf) ClearError() {
f.err = nil
}
// SetErrorf sets the internal Fpdf error with formatted text to halt PDF
// generation; this may facilitate error handling by application. If an error
// condition is already set, this call is ignored.
//
// See the documentation for printing in the standard fmt package for details
// about fmtStr and args.
func (f *Fpdf) SetErrorf(fmtStr string, args ...interface{}) {
if f.err == nil {
f.err = fmt.Errorf(fmtStr, args...)
}
}
// String satisfies the fmt.Stringer interface and summarizes the Fpdf
// instance.
func (f *Fpdf) String() string {
return "Fpdf " + cnFpdfVersion
}
// SetError sets an error to halt PDF generation. This may facilitate error
// handling by application. See also Ok(), Err() and Error().
func (f *Fpdf) SetError(err error) {
if f.err == nil && err != nil {
f.err = err
}
}
// Error returns the internal Fpdf error; this will be nil if no error has occurred.
func (f *Fpdf) Error() error {
return f.err
}
// GetPageSize returns the current page's width and height. This is the paper's
// size. To compute the size of the area being used, subtract the margins (see
// GetMargins()).
func (f *Fpdf) GetPageSize() (width, height float64) {
width = f.w
height = f.h
return
}
// GetMargins returns the left, top, right, and bottom margins. The first three
// are set with the SetMargins() method. The bottom margin is set with the
// SetAutoPageBreak() method.
func (f *Fpdf) GetMargins() (left, top, right, bottom float64) {
left = f.lMargin
top = f.tMargin
right = f.rMargin
bottom = f.bMargin
return
}
// SetMargins defines the left, top and right margins. By default, they equal 1
// cm. Call this method to change them. If the value of the right margin is
// less than zero, it is set to the same as the left margin.
func (f *Fpdf) SetMargins(left, top, right float64) {
f.lMargin = left
f.tMargin = top
if right < 0 {
right = left
}
f.rMargin = right
}
// SetLeftMargin defines the left margin. The method can be called before
// creating the first page. If the current abscissa gets out of page, it is
// brought back to the margin.
func (f *Fpdf) SetLeftMargin(margin float64) {
f.lMargin = margin
if f.page > 0 && f.x < margin {
f.x = margin
}
}
// GetCellMargin returns the cell margin. This is the amount of space before
// and after the text within a cell that's left blank, and is in units passed
// to New(). It defaults to 1mm.
func (f *Fpdf) GetCellMargin() float64 {
return f.cMargin
}
// SetCellMargin sets the cell margin. This is the amount of space before and
// after the text within a cell that's left blank, and is in units passed to
// New().
func (f *Fpdf) SetCellMargin(margin float64) {
f.cMargin = margin
}
// SetPageBoxRec sets the page box for the current page, and any following
// pages. Allowable types are trim, trimbox, crop, cropbox, bleed, bleedbox,
// art and artbox box types are case insensitive. See SetPageBox() for a method
// that specifies the coordinates and extent of the page box individually.
func (f *Fpdf) SetPageBoxRec(t string, pb PageBox) {
switch strings.ToLower(t) {
case "trim":
fallthrough
case "trimbox":
t = "TrimBox"
case "crop":
fallthrough
case "cropbox":
t = "CropBox"
case "bleed":
fallthrough
case "bleedbox":
t = "BleedBox"
case "art":
fallthrough
case "artbox":
t = "ArtBox"
default:
f.err = fmt.Errorf("%s is not a valid page box type", t)
return
}
pb.X = pb.X * f.k
pb.Y = pb.Y * f.k
pb.Wd = (pb.Wd * f.k) + pb.X
pb.Ht = (pb.Ht * f.k) + pb.Y
if f.page > 0 {
f.pageBoxes[f.page][t] = pb
}
// always override. page defaults are supplied in addPage function
f.defPageBoxes[t] = pb
}
// SetPageBox sets the page box for the current page, and any following pages.
// Allowable types are trim, trimbox, crop, cropbox, bleed, bleedbox, art and
// artbox box types are case insensitive.
func (f *Fpdf) SetPageBox(t string, x, y, wd, ht float64) {
f.SetPageBoxRec(t, PageBox{SizeType{Wd: wd, Ht: ht}, PointType{X: x, Y: y}})
}
// SetPage sets the current page to that of a valid page in the PDF document.
// pageNum is one-based. The SetPage() example demonstrates this method.
func (f *Fpdf) SetPage(pageNum int) {
if (pageNum > 0) && (pageNum < len(f.pages)) {
f.page = pageNum
}
}
// PageCount returns the number of pages currently in the document. Since page
// numbers in gofpdf are one-based, the page count is the same as the page
// number of the current last page.
func (f *Fpdf) PageCount() int {
return len(f.pages) - 1
}
// SetFontLocation sets the location in the file system of the font and font
// definition files.
func (f *Fpdf) SetFontLocation(fontDirStr string) {
f.fontpath = fontDirStr
}
// SetFontLoader sets a loader used to read font files (.json and .z) from an
// arbitrary source. If a font loader has been specified, it is used to load
// the named font resources when AddFont() is called. If this operation fails,
// an attempt is made to load the resources from the configured font directory
// (see SetFontLocation()).
func (f *Fpdf) SetFontLoader(loader FontLoader) {
f.fontLoader = loader
}
// SetHeaderFuncMode sets the function that lets the application render the
// page header. See SetHeaderFunc() for more details. The value for homeMode
// should be set to true to have the current position set to the left and top
// margin after the header function is called.
func (f *Fpdf) SetHeaderFuncMode(fnc func(), homeMode bool) {
f.headerFnc = fnc
f.headerHomeMode = homeMode
}
// SetHeaderFunc sets the function that lets the application render the page
// header. The specified function is automatically called by AddPage() and
// should not be called directly by the application. The implementation in Fpdf
// is empty, so you have to provide an appropriate function if you want page
// headers. fnc will typically be a closure that has access to the Fpdf
// instance and other document generation variables.
//
// A header is a convenient place to put background content that repeats on
// each page such as a watermark. When this is done, remember to reset the X
// and Y values so the normal content begins where expected. Including a
// watermark on each page is demonstrated in the example for TransformRotate.
//
// This method is demonstrated in the example for AddPage().
func (f *Fpdf) SetHeaderFunc(fnc func()) {
f.headerFnc = fnc
}
// SetFooterFunc sets the function that lets the application render the page
// footer. The specified function is automatically called by AddPage() and
// Close() and should not be called directly by the application. The
// implementation in Fpdf is empty, so you have to provide an appropriate
// function if you want page footers. fnc will typically be a closure that has
// access to the Fpdf instance and other document generation variables. See
// SetFooterFuncLpi for a similar function that passes a last page indicator.
//
// This method is demonstrated in the example for AddPage().
func (f *Fpdf) SetFooterFunc(fnc func()) {
f.footerFnc = fnc
f.footerFncLpi = nil
}
// SetFooterFuncLpi sets the function that lets the application render the page
// footer. The specified function is automatically called by AddPage() and
// Close() and should not be called directly by the application. It is passed a
// boolean that is true if the last page of the document is being rendered. The
// implementation in Fpdf is empty, so you have to provide an appropriate
// function if you want page footers. fnc will typically be a closure that has
// access to the Fpdf instance and other document generation variables.
func (f *Fpdf) SetFooterFuncLpi(fnc func(lastPage bool)) {
f.footerFncLpi = fnc
f.footerFnc = nil
}
// SetTopMargin defines the top margin. The method can be called before
// creating the first page.
func (f *Fpdf) SetTopMargin(margin float64) {
f.tMargin = margin
}
// SetRightMargin defines the right margin. The method can be called before
// creating the first page.
func (f *Fpdf) SetRightMargin(margin float64) {
f.rMargin = margin
}
// GetAutoPageBreak returns true if automatic pages breaks are enabled, false
// otherwise. This is followed by the triggering limit from the bottom of the
// page. This value applies only if automatic page breaks are enabled.
func (f *Fpdf) GetAutoPageBreak() (auto bool, margin float64) {
auto = f.autoPageBreak
margin = f.bMargin
return
}
// SetAutoPageBreak enables or disables the automatic page breaking mode. When
// enabling, the second parameter is the distance from the bottom of the page
// that defines the triggering limit. By default, the mode is on and the margin
// is 2 cm.
func (f *Fpdf) SetAutoPageBreak(auto bool, margin float64) {
f.autoPageBreak = auto
f.bMargin = margin
f.pageBreakTrigger = f.h - margin
}
// SetDisplayMode sets advisory display directives for the document viewer.
// Pages can be displayed entirely on screen, occupy the full width of the
// window, use real size, be scaled by a specific zooming factor or use viewer
// default (configured in the Preferences menu of Adobe Reader). The page
// layout can be specified so that pages are displayed individually or in
// pairs.
//
// zoomStr can be "fullpage" to display the entire page on screen, "fullwidth"
// to use maximum width of window, "real" to use real size (equivalent to 100%
// zoom) or "default" to use viewer default mode.
//
// layoutStr can be "single" (or "SinglePage") to display one page at once,
// "continuous" (or "OneColumn") to display pages continuously, "two" (or
// "TwoColumnLeft") to display two pages on two columns with odd-numbered pages
// on the left, or "TwoColumnRight" to display two pages on two columns with
// odd-numbered pages on the right, or "TwoPageLeft" to display pages two at a
// time with odd-numbered pages on the left, or "TwoPageRight" to display pages
// two at a time with odd-numbered pages on the right, or "default" to use
// viewer default mode.
func (f *Fpdf) SetDisplayMode(zoomStr, layoutStr string) {
if f.err != nil {
return
}
if layoutStr == "" {
layoutStr = "default"
}
switch zoomStr {
case "fullpage", "fullwidth", "real", "default":
f.zoomMode = zoomStr
default:
f.err = fmt.Errorf("incorrect zoom display mode: %s", zoomStr)
return
}
switch layoutStr {
case "single", "continuous", "two", "default", "SinglePage", "OneColumn",
"TwoColumnLeft", "TwoColumnRight", "TwoPageLeft", "TwoPageRight":
f.layoutMode = layoutStr
default:
f.err = fmt.Errorf("incorrect layout display mode: %s", layoutStr)
return
}
}
// SetDefaultCompression controls the default setting of the internal
// compression flag. See SetCompression() for more details. Compression is on
// by default.
func SetDefaultCompression(compress bool) {
gl.noCompress = !compress
}
// SetCompression activates or deactivates page compression with zlib. When
// activated, the internal representation of each page is compressed, which
// leads to a compression ratio of about 2 for the resulting document.
// Compression is on by default.
func (f *Fpdf) SetCompression(compress bool) {
f.compress = compress
}
// SetProducer defines the producer of the document. isUTF8 indicates if the string
// is encoded in ISO-8859-1 (false) or UTF-8 (true).
func (f *Fpdf) SetProducer(producerStr string, isUTF8 bool) {
if isUTF8 {
producerStr = utf8toutf16(producerStr)
}
f.producer = producerStr
}
// SetTitle defines the title of the document. isUTF8 indicates if the string
// is encoded in ISO-8859-1 (false) or UTF-8 (true).
func (f *Fpdf) SetTitle(titleStr string, isUTF8 bool) {
if isUTF8 {
titleStr = utf8toutf16(titleStr)
}
f.title = titleStr
}
// SetSubject defines the subject of the document. isUTF8 indicates if the
// string is encoded in ISO-8859-1 (false) or UTF-8 (true).
func (f *Fpdf) SetSubject(subjectStr string, isUTF8 bool) {
if isUTF8 {
subjectStr = utf8toutf16(subjectStr)
}
f.subject = subjectStr
}
// SetAuthor defines the author of the document. isUTF8 indicates if the string
// is encoded in ISO-8859-1 (false) or UTF-8 (true).
func (f *Fpdf) SetAuthor(authorStr string, isUTF8 bool) {
if isUTF8 {
authorStr = utf8toutf16(authorStr)
}
f.author = authorStr
}
// SetKeywords defines the keywords of the document. keywordStr is a
// space-delimited string, for example "invoice August". isUTF8 indicates if
// the string is encoded
func (f *Fpdf) SetKeywords(keywordsStr string, isUTF8 bool) {
if isUTF8 {
keywordsStr = utf8toutf16(keywordsStr)
}
f.keywords = keywordsStr
}
// SetCreator defines the creator of the document. isUTF8 indicates if the
// string is encoded in ISO-8859-1 (false) or UTF-8 (true).
func (f *Fpdf) SetCreator(creatorStr string, isUTF8 bool) {
if isUTF8 {
creatorStr = utf8toutf16(creatorStr)
}
f.creator = creatorStr
}
// SetXmpMetadata defines XMP metadata that will be embedded with the document.
func (f *Fpdf) SetXmpMetadata(xmpStream []byte) {
f.xmp = xmpStream
}
// AliasNbPages defines an alias for the total number of pages. It will be
// substituted as the document is closed. An empty string is replaced with the
// string "{nb}".
//
// See the example for AddPage() for a demonstration of this method.
func (f *Fpdf) AliasNbPages(aliasStr string) {
if aliasStr == "" {
aliasStr = "{nb}"
}
f.aliasNbPagesStr = aliasStr
}
// RTL enables right-to-left mode
func (f *Fpdf) RTL() {
f.isRTL = true
}
// LTR disables right-to-left mode
func (f *Fpdf) LTR() {
f.isRTL = false
}
// open begins a document
func (f *Fpdf) open() {
f.state = 1
}
// Close terminates the PDF document. It is not necessary to call this method
// explicitly because Output(), OutputAndClose() and OutputFileAndClose() do it
// automatically. If the document contains no page, AddPage() is called to
// prevent the generation of an invalid document.
func (f *Fpdf) Close() {
if f.err == nil {
if f.clipNest > 0 {
f.err = fmt.Errorf("clip procedure must be explicitly ended")
} else if f.transformNest > 0 {
f.err = fmt.Errorf("transformation procedure must be explicitly ended")
}
}
if f.err != nil {
return
}
if f.state == 3 {
return
}
if f.page == 0 {
f.AddPage()
if f.err != nil {
return
}
}
// Page footer
f.inFooter = true
if f.footerFnc != nil {
f.footerFnc()
} else if f.footerFncLpi != nil {
f.footerFncLpi(true)
}
f.inFooter = false
// Close page
f.endpage()
// Close document
f.enddoc()
return
}
// PageSize returns the width and height of the specified page in the units
// established in New(). These return values are followed by the unit of
// measure itself. If pageNum is zero or otherwise out of bounds, it returns
// the default page size, that is, the size of the page that would be added by
// AddPage().
func (f *Fpdf) PageSize(pageNum int) (wd, ht float64, unitStr string) {
sz, ok := f.pageSizes[pageNum]
if ok {
sz.Wd, sz.Ht = sz.Wd/f.k, sz.Ht/f.k
} else {
sz = f.defPageSize // user units
}
return sz.Wd, sz.Ht, f.unitStr
}
// AddPageFormat adds a new page with non-default orientation or size. See
// AddPage() for more details.
//
// See New() for a description of orientationStr.
//
// size specifies the size of the new page in the units established in New().
//
// The PageSize() example demonstrates this method.
func (f *Fpdf) AddPageFormat(orientationStr string, size SizeType) {
if f.err != nil {
return
}
if f.page != len(f.pages)-1 {
f.page = len(f.pages) - 1
}
if f.state == 0 {
f.open()
}
familyStr := f.fontFamily
style := f.fontStyle
if f.underline {
style += "U"
}
if f.strikeout {
style += "S"
}
fontsize := f.fontSizePt
lw := f.lineWidth
dc := f.color.draw
fc := f.color.fill
tc := f.color.text
cf := f.colorFlag
if f.page > 0 {
f.inFooter = true
// Page footer avoid double call on footer.
if f.footerFnc != nil {
f.footerFnc()
} else if f.footerFncLpi != nil {
f.footerFncLpi(false) // not last page.
}
f.inFooter = false
// Close page
f.endpage()
}
// Start new page
f.beginpage(orientationStr, size)
// Set line cap style to current value
// f.out("2 J")
f.outf("%d J", f.capStyle)
// Set line join style to current value
f.outf("%d j", f.joinStyle)
// Set line width
f.lineWidth = lw
f.outf("%.2f w", lw*f.k)
// Set dash pattern
if len(f.dashArray) > 0 {
f.outputDashPattern()
}
// Set font
if familyStr != "" {
f.SetFont(familyStr, style, fontsize)
if f.err != nil {
return
}
}
// Set colors
f.color.draw = dc
if dc.str != "0 G" {
f.out(dc.str)
}
f.color.fill = fc
if fc.str != "0 g" {
f.out(fc.str)
}
f.color.text = tc
f.colorFlag = cf
// Page header
if f.headerFnc != nil {
f.inHeader = true
f.headerFnc()
f.inHeader = false
if f.headerHomeMode {
f.SetHomeXY()
}
}
// Restore line width
if f.lineWidth != lw {
f.lineWidth = lw
f.outf("%.2f w", lw*f.k)
}
// Restore font
if familyStr != "" {
f.SetFont(familyStr, style, fontsize)
if f.err != nil {
return
}
}
// Restore colors
if f.color.draw.str != dc.str {
f.color.draw = dc
f.out(dc.str)
}
if f.color.fill.str != fc.str {
f.color.fill = fc
f.out(fc.str)
}
f.color.text = tc
f.colorFlag = cf
return
}
// AddPage adds a new page to the document. If a page is already present, the
// Footer() method is called first to output the footer. Then the page is
// added, the current position set to the top-left corner according to the left
// and top margins, and Header() is called to display the header.
//
// The font which was set before calling is automatically restored. There is no
// need to call SetFont() again if you want to continue with the same font. The
// same is true for colors and line width.
//
// The origin of the coordinate system is at the top-left corner and increasing
// ordinates go downwards.
//
// See AddPageFormat() for a version of this method that allows the page size
// and orientation to be different than the default.
func (f *Fpdf) AddPage() {
if f.err != nil {
return
}
// dbg("AddPage")
f.AddPageFormat(f.defOrientation, f.defPageSize)
return
}
// PageNo returns the current page number.
//
// See the example for AddPage() for a demonstration of this method.
func (f *Fpdf) PageNo() int {
return f.page
}
func colorComp(v int) (int, float64) {
if v < 0 {
v = 0
} else if v > 255 {
v = 255
}
return v, float64(v) / 255.0
}
func rgbColorValue(r, g, b int, grayStr, fullStr string) (clr colorType) {
clr.ir, clr.r = colorComp(r)
clr.ig, clr.g = colorComp(g)
clr.ib, clr.b = colorComp(b)
clr.mode = colorModeRGB
clr.gray = clr.ir == clr.ig && clr.r == clr.b
if len(grayStr) > 0 {
if clr.gray {
clr.str = sprintf("%.3f %s", clr.r, grayStr)
} else {
clr.str = sprintf("%.3f %.3f %.3f %s", clr.r, clr.g, clr.b, fullStr)
}
} else {
clr.str = sprintf("%.3f %.3f %.3f", clr.r, clr.g, clr.b)
}
return
}
// SetDrawColor defines the color used for all drawing operations (lines,
// rectangles and cell borders). It is expressed in RGB components (0 - 255).
// The method can be called before the first page is created. The value is
// retained from page to page.
func (f *Fpdf) SetDrawColor(r, g, b int) {
f.setDrawColor(r, g, b)
}
func (f *Fpdf) setDrawColor(r, g, b int) {
f.color.draw = rgbColorValue(r, g, b, "G", "RG")
if f.page > 0 {
f.out(f.color.draw.str)
}
}
// GetDrawColor returns the most recently set draw color as RGB components (0 -
// 255). This will not be the current value if a draw color of some other type
// (for example, spot) has been more recently set.
func (f *Fpdf) GetDrawColor() (int, int, int) {
return f.color.draw.ir, f.color.draw.ig, f.color.draw.ib
}
// SetFillColor defines the color used for all filling operations (filled
// rectangles and cell backgrounds). It is expressed in RGB components (0
// -255). The method can be called before the first page is created and the
// value is retained from page to page.
func (f *Fpdf) SetFillColor(r, g, b int) {
f.setFillColor(r, g, b)
}
func (f *Fpdf) setFillColor(r, g, b int) {
f.color.fill = rgbColorValue(r, g, b, "g", "rg")
f.colorFlag = f.color.fill.str != f.color.text.str
if f.page > 0 {
f.out(f.color.fill.str)
}
}
// GetFillColor returns the most recently set fill color as RGB components (0 -
// 255). This will not be the current value if a fill color of some other type
// (for example, spot) has been more recently set.
func (f *Fpdf) GetFillColor() (int, int, int) {
return f.color.fill.ir, f.color.fill.ig, f.color.fill.ib
}
// SetTextColor defines the color used for text. It is expressed in RGB
// components (0 - 255). The method can be called before the first page is
// created. The value is retained from page to page.
func (f *Fpdf) SetTextColor(r, g, b int) {
f.setTextColor(r, g, b)
}
func (f *Fpdf) setTextColor(r, g, b int) {
f.color.text = rgbColorValue(r, g, b, "g", "rg")
f.colorFlag = f.color.fill.str != f.color.text.str
}
// GetTextColor returns the most recently set text color as RGB components (0 -
// 255). This will not be the current value if a text color of some other type
// (for example, spot) has been more recently set.
func (f *Fpdf) GetTextColor() (int, int, int) {
return f.color.text.ir, f.color.text.ig, f.color.text.ib
}
// GetStringWidth returns the length of a string in user units. A font must be
// currently selected.
func (f *Fpdf) GetStringWidth(s string) float64 {
if f.err != nil {
return 0
}
w := f.GetStringSymbolWidth(s)
return float64(w) * f.fontSize / 1000
}
// GetStringSymbolWidth returns the length of a string in glyf units. A font must be
// currently selected.
func (f *Fpdf) GetStringSymbolWidth(s string) int {
if f.err != nil {
return 0
}
w := 0
if f.isCurrentUTF8 {
unicode := []rune(s)
for _, char := range unicode {
intChar := int(char)
if len(f.currentFont.Cw) >= intChar && f.currentFont.Cw[intChar] > 0 {
if f.currentFont.Cw[intChar] != 65535 {
w += f.currentFont.Cw[intChar]
}
} else if f.currentFont.Desc.MissingWidth != 0 {
w += f.currentFont.Desc.MissingWidth
} else {
w += 500
}
}
} else {
for _, ch := range []byte(s) {
if ch == 0 {
break
}
w += f.currentFont.Cw[ch]
}
}
return w
}
// SetLineWidth defines the line width. By default, the value equals 0.2 mm.
// The method can be called before the first page is created. The value is
// retained from page to page.
func (f *Fpdf) SetLineWidth(width float64) {
f.setLineWidth(width)
}
func (f *Fpdf) setLineWidth(width float64) {
f.lineWidth = width
if f.page > 0 {
f.outf("%.2f w", width*f.k)
}
}
// GetLineWidth returns the current line thickness.
func (f *Fpdf) GetLineWidth() float64 {
return f.lineWidth
}
// SetLineCapStyle defines the line cap style. styleStr should be "butt",
// "round" or "square". A square style projects from the end of the line. The
// method can be called before the first page is created. The value is
// retained from page to page.
func (f *Fpdf) SetLineCapStyle(styleStr string) {
var capStyle int
switch styleStr {
case "round":
capStyle = 1
case "square":
capStyle = 2
default:
capStyle = 0
}
f.capStyle = capStyle
if f.page > 0 {
f.outf("%d J", f.capStyle)
}
}
// SetLineJoinStyle defines the line cap style. styleStr should be "miter",
// "round" or "bevel". The method can be called before the first page
// is created. The value is retained from page to page.
func (f *Fpdf) SetLineJoinStyle(styleStr string) {
var joinStyle int
switch styleStr {
case "round":
joinStyle = 1
case "bevel":
joinStyle = 2
default:
joinStyle = 0
}
f.joinStyle = joinStyle
if f.page > 0 {
f.outf("%d j", f.joinStyle)
}
}
// SetDashPattern sets the dash pattern that is used to draw lines. The
// dashArray elements are numbers that specify the lengths, in units
// established in New(), of alternating dashes and gaps. The dash phase
// specifies the distance into the dash pattern at which to start the dash. The
// dash pattern is retained from page to page. Call this method with an empty
// array to restore solid line drawing.
//
// The Beziergon() example demonstrates this method.
func (f *Fpdf) SetDashPattern(dashArray []float64, dashPhase float64) {
scaled := make([]float64, len(dashArray))
for i, value := range dashArray {
scaled[i] = value * f.k
}
dashPhase *= f.k
f.dashArray = scaled
f.dashPhase = dashPhase
if f.page > 0 {
f.outputDashPattern()
}
}
func (f *Fpdf) outputDashPattern() {
var buf bytes.Buffer
buf.WriteByte('[')
for i, value := range f.dashArray {
if i > 0 {
buf.WriteByte(' ')
}
buf.WriteString(strconv.FormatFloat(value, 'f', 2, 64))
}
buf.WriteString("] ")
buf.WriteString(strconv.FormatFloat(f.dashPhase, 'f', 2, 64))
buf.WriteString(" d")
f.outbuf(&buf)
}
// Line draws a line between points (x1, y1) and (x2, y2) using the current
// draw color, line width and cap style.
func (f *Fpdf) Line(x1, y1, x2, y2 float64) {
f.outf("%.2f %.2f m %.2f %.2f l S", x1*f.k, (f.h-y1)*f.k, x2*f.k, (f.h-y2)*f.k)
}
// fillDrawOp corrects path painting operators
func fillDrawOp(styleStr string) (opStr string) {
switch strings.ToUpper(styleStr) {
case "", "D":
// Stroke the path.
opStr = "S"
case "F":
// fill the path, using the nonzero winding number rule
opStr = "f"
case "F*":
// fill the path, using the even-odd rule
opStr = "f*"
case "FD", "DF":
// fill and then stroke the path, using the nonzero winding number rule
opStr = "B"
case "FD*", "DF*":
// fill and then stroke the path, using the even-odd rule
opStr = "B*"
default:
opStr = styleStr
}
return
}
// Rect outputs a rectangle of width w and height h with the upper left corner
// positioned at point (x, y).
//
// It can be drawn (border only), filled (with no border) or both. styleStr can
// be "F" for filled, "D" for outlined only, or "DF" or "FD" for outlined and
// filled. An empty string will be replaced with "D". Drawing uses the current
// draw color and line width centered on the rectangle's perimeter. Filling
// uses the current fill color.
func (f *Fpdf) Rect(x, y, w, h float64, styleStr string) {
f.outf("%.2f %.2f %.2f %.2f re %s", x*f.k, (f.h-y)*f.k, w*f.k, -h*f.k, fillDrawOp(styleStr))
}
// RoundedRect outputs a rectangle of width w and height h with the upper left
// corner positioned at point (x, y). It can be drawn (border only), filled
// (with no border) or both. styleStr can be "F" for filled, "D" for outlined
// only, or "DF" or "FD" for outlined and filled. An empty string will be
// replaced with "D". Drawing uses the current draw color and line width
// centered on the rectangle's perimeter. Filling uses the current fill color.
// The rounded corners of the rectangle are specified by radius r. corners is a
// string that includes "1" to round the upper left corner, "2" to round the
// upper right corner, "3" to round the lower right corner, and "4" to round
// the lower left corner. The RoundedRect example demonstrates this method.
func (f *Fpdf) RoundedRect(x, y, w, h, r float64, corners string, stylestr string) {
// This routine was adapted by Brigham Thompson from a script by Christophe Prugnaud
var rTL, rTR, rBR, rBL float64 // zero means no rounded corner
if strings.Contains(corners, "1") {
rTL = r
}
if strings.Contains(corners, "2") {
rTR = r
}
if strings.Contains(corners, "3") {
rBR = r
}
if strings.Contains(corners, "4") {
rBL = r
}
f.RoundedRectExt(x, y, w, h, rTL, rTR, rBR, rBL, stylestr)
}
// RoundedRectExt behaves the same as RoundedRect() but supports a different
// radius for each corner. A zero radius means squared corner. See
// RoundedRect() for more details. This method is demonstrated in the
// RoundedRect() example.
func (f *Fpdf) RoundedRectExt(x, y, w, h, rTL, rTR, rBR, rBL float64, stylestr string) {
f.roundedRectPath(x, y, w, h, rTL, rTR, rBR, rBL)
f.out(fillDrawOp(stylestr))
}
// Circle draws a circle centered on point (x, y) with radius r.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color and line width centered on the circle's perimeter.
// Filling uses the current fill color.
func (f *Fpdf) Circle(x, y, r float64, styleStr string) {
f.Ellipse(x, y, r, r, 0, styleStr)
}
// Ellipse draws an ellipse centered at point (x, y). rx and ry specify its
// horizontal and vertical radii.
//
// degRotate specifies the counter-clockwise angle in degrees that the ellipse
// will be rotated.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color and line width centered on the ellipse's perimeter.
// Filling uses the current fill color.
//
// The Circle() example demonstrates this method.
func (f *Fpdf) Ellipse(x, y, rx, ry, degRotate float64, styleStr string) {
f.arc(x, y, rx, ry, degRotate, 0, 360, styleStr, false)
}
// Polygon draws a closed figure defined by a series of vertices specified by
// points. The x and y fields of the points use the units established in New().
// The last point in the slice will be implicitly joined to the first to close
// the polygon.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color and line width centered on the ellipse's perimeter.
// Filling uses the current fill color.
func (f *Fpdf) Polygon(points []PointType, styleStr string) {
if len(points) > 2 {
for j, pt := range points {
if j == 0 {
f.point(pt.X, pt.Y)
} else {
f.outf("%.5f %.5f l ", pt.X*f.k, (f.h-pt.Y)*f.k)
}
}
f.outf("%.5f %.5f l ", points[0].X*f.k, (f.h-points[0].Y)*f.k)
f.DrawPath(styleStr)
}
}
// Beziergon draws a closed figure defined by a series of cubic Bézier curve
// segments. The first point in the slice defines the starting point of the
// figure. Each three following points p1, p2, p3 represent a curve segment to
// the point p3 using p1 and p2 as the Bézier control points.
//
// The x and y fields of the points use the units established in New().
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color and line width centered on the ellipse's perimeter.
// Filling uses the current fill color.
func (f *Fpdf) Beziergon(points []PointType, styleStr string) {
// Thanks, Robert Lillack, for contributing this function.
if len(points) < 4 {
return
}
f.point(points[0].XY())
points = points[1:]
for len(points) >= 3 {
cx0, cy0 := points[0].XY()
cx1, cy1 := points[1].XY()
x1, y1 := points[2].XY()
f.curve(cx0, cy0, cx1, cy1, x1, y1)
points = points[3:]
}
f.DrawPath(styleStr)
}
// point outputs current point
func (f *Fpdf) point(x, y float64) {
f.outf("%.2f %.2f m", x*f.k, (f.h-y)*f.k)
}
// curve outputs a single cubic Bézier curve segment from current point
func (f *Fpdf) curve(cx0, cy0, cx1, cy1, x, y float64) {
// Thanks, Robert Lillack, for straightening this out
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c", cx0*f.k, (f.h-cy0)*f.k, cx1*f.k,
(f.h-cy1)*f.k, x*f.k, (f.h-y)*f.k)
}
// Curve draws a single-segment quadratic Bézier curve. The curve starts at
// the point (x0, y0) and ends at the point (x1, y1). The control point (cx,
// cy) specifies the curvature. At the start point, the curve is tangent to the
// straight line between the start point and the control point. At the end
// point, the curve is tangent to the straight line between the end point and
// the control point.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color, line width, and cap style centered on the curve's
// path. Filling uses the current fill color.
//
// The Circle() example demonstrates this method.
func (f *Fpdf) Curve(x0, y0, cx, cy, x1, y1 float64, styleStr string) {
f.point(x0, y0)
f.outf("%.5f %.5f %.5f %.5f v %s", cx*f.k, (f.h-cy)*f.k, x1*f.k, (f.h-y1)*f.k,
fillDrawOp(styleStr))
}
// CurveCubic draws a single-segment cubic Bézier curve. This routine performs
// the same function as CurveBezierCubic() but has a nonstandard argument order.
// It is retained to preserve backward compatibility.
func (f *Fpdf) CurveCubic(x0, y0, cx0, cy0, x1, y1, cx1, cy1 float64, styleStr string) {
// f.point(x0, y0)
// f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c %s", cx0*f.k, (f.h-cy0)*f.k,
// cx1*f.k, (f.h-cy1)*f.k, x1*f.k, (f.h-y1)*f.k, fillDrawOp(styleStr))
f.CurveBezierCubic(x0, y0, cx0, cy0, cx1, cy1, x1, y1, styleStr)
}
// CurveBezierCubic draws a single-segment cubic Bézier curve. The curve starts at
// the point (x0, y0) and ends at the point (x1, y1). The control points (cx0,
// cy0) and (cx1, cy1) specify the curvature. At the start point, the curve is
// tangent to the straight line between the start point and the control point
// (cx0, cy0). At the end point, the curve is tangent to the straight line
// between the end point and the control point (cx1, cy1).
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color, line width, and cap style centered on the curve's
// path. Filling uses the current fill color.
//
// This routine performs the same function as CurveCubic() but uses standard
// argument order.
//
// The Circle() example demonstrates this method.
func (f *Fpdf) CurveBezierCubic(x0, y0, cx0, cy0, cx1, cy1, x1, y1 float64, styleStr string) {
f.point(x0, y0)
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c %s", cx0*f.k, (f.h-cy0)*f.k,
cx1*f.k, (f.h-cy1)*f.k, x1*f.k, (f.h-y1)*f.k, fillDrawOp(styleStr))
}
// Arc draws an elliptical arc centered at point (x, y). rx and ry specify its
// horizontal and vertical radii.
//
// degRotate specifies the angle that the arc will be rotated. degStart and
// degEnd specify the starting and ending angle of the arc. All angles are
// specified in degrees and measured counter-clockwise from the 3 o'clock
// position.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color, line width, and cap style centered on the arc's
// path. Filling uses the current fill color.
//
// The Circle() example demonstrates this method.
func (f *Fpdf) Arc(x, y, rx, ry, degRotate, degStart, degEnd float64, styleStr string) {
f.arc(x, y, rx, ry, degRotate, degStart, degEnd, styleStr, false)
}
// GetAlpha returns the alpha blending channel, which consists of the
// alpha transparency value and the blend mode. See SetAlpha for more
// details.
func (f *Fpdf) GetAlpha() (alpha float64, blendModeStr string) {
return f.alpha, f.blendMode
}
// SetAlpha sets the alpha blending channel. The blending effect applies to
// text, drawings and images.
//
// alpha must be a value between 0.0 (fully transparent) to 1.0 (fully opaque).
// Values outside of this range result in an error.
//
// blendModeStr must be one of "Normal", "Multiply", "Screen", "Overlay",
// "Darken", "Lighten", "ColorDodge", "ColorBurn","HardLight", "SoftLight",
// "Difference", "Exclusion", "Hue", "Saturation", "Color", or "Luminosity". An
// empty string is replaced with "Normal".
//
// To reset normal rendering after applying a blending mode, call this method
// with alpha set to 1.0 and blendModeStr set to "Normal".
func (f *Fpdf) SetAlpha(alpha float64, blendModeStr string) {
if f.err != nil {
return
}
var bl blendModeType
switch blendModeStr {
case "Normal", "Multiply", "Screen", "Overlay",
"Darken", "Lighten", "ColorDodge", "ColorBurn", "HardLight", "SoftLight",
"Difference", "Exclusion", "Hue", "Saturation", "Color", "Luminosity":
bl.modeStr = blendModeStr
case "":
bl.modeStr = "Normal"
default:
f.err = fmt.Errorf("unrecognized blend mode \"%s\"", blendModeStr)
return
}
if alpha < 0.0 || alpha > 1.0 {
f.err = fmt.Errorf("alpha value (0.0 - 1.0) is out of range: %.3f", alpha)
return
}
f.alpha = alpha
f.blendMode = blendModeStr
alphaStr := sprintf("%.3f", alpha)
keyStr := sprintf("%s %s", alphaStr, blendModeStr)
pos, ok := f.blendMap[keyStr]
if !ok {
pos = len(f.blendList) // at least 1
f.blendList = append(f.blendList, blendModeType{alphaStr, alphaStr, blendModeStr, 0})
f.blendMap[keyStr] = pos
}
f.outf("/GS%d gs", pos)
}
func (f *Fpdf) gradientClipStart(x, y, w, h float64) {
// Save current graphic state and set clipping area
f.outf("q %.2f %.2f %.2f %.2f re W n", x*f.k, (f.h-y)*f.k, w*f.k, -h*f.k)
// Set up transformation matrix for gradient
f.outf("%.5f 0 0 %.5f %.5f %.5f cm", w*f.k, h*f.k, x*f.k, (f.h-(y+h))*f.k)
}
func (f *Fpdf) gradientClipEnd() {
// Restore previous graphic state
f.out("Q")
}
func (f *Fpdf) gradient(tp, r1, g1, b1, r2, g2, b2 int, x1, y1, x2, y2, r float64) {
pos := len(f.gradientList)
clr1 := rgbColorValue(r1, g1, b1, "", "")
clr2 := rgbColorValue(r2, g2, b2, "", "")
f.gradientList = append(f.gradientList, gradientType{tp, clr1.str, clr2.str,
x1, y1, x2, y2, r, 0})
f.outf("/Sh%d sh", pos)
}
// LinearGradient draws a rectangular area with a blending of one color to
// another. The rectangle is of width w and height h. Its upper left corner is
// positioned at point (x, y).
//
// Each color is specified with three component values, one each for red, green
// and blue. The values range from 0 to 255. The first color is specified by
// (r1, g1, b1) and the second color by (r2, g2, b2).
//
// The blending is controlled with a gradient vector that uses normalized
// coordinates in which the lower left corner is position (0, 0) and the upper
// right corner is (1, 1). The vector's origin and destination are specified by
// the points (x1, y1) and (x2, y2). In a linear gradient, blending occurs
// perpendicularly to the vector. The vector does not necessarily need to be
// anchored on the rectangle edge. Color 1 is used up to the origin of the
// vector and color 2 is used beyond the vector's end point. Between the points
// the colors are gradually blended.
func (f *Fpdf) LinearGradient(x, y, w, h float64, r1, g1, b1, r2, g2, b2 int, x1, y1, x2, y2 float64) {
f.gradientClipStart(x, y, w, h)
f.gradient(2, r1, g1, b1, r2, g2, b2, x1, y1, x2, y2, 0)
f.gradientClipEnd()
}
// RadialGradient draws a rectangular area with a blending of one color to
// another. The rectangle is of width w and height h. Its upper left corner is
// positioned at point (x, y).
//
// Each color is specified with three component values, one each for red, green
// and blue. The values range from 0 to 255. The first color is specified by
// (r1, g1, b1) and the second color by (r2, g2, b2).
//
// The blending is controlled with a point and a circle, both specified with
// normalized coordinates in which the lower left corner of the rendered
// rectangle is position (0, 0) and the upper right corner is (1, 1). Color 1
// begins at the origin point specified by (x1, y1). Color 2 begins at the
// circle specified by the center point (x2, y2) and radius r. Colors are
// gradually blended from the origin to the circle. The origin and the circle's
// center do not necessarily have to coincide, but the origin must be within
// the circle to avoid rendering problems.
//
// The LinearGradient() example demonstrates this method.
func (f *Fpdf) RadialGradient(x, y, w, h float64, r1, g1, b1, r2, g2, b2 int, x1, y1, x2, y2, r float64) {
f.gradientClipStart(x, y, w, h)
f.gradient(3, r1, g1, b1, r2, g2, b2, x1, y1, x2, y2, r)
f.gradientClipEnd()
}
// ClipRect begins a rectangular clipping operation. The rectangle is of width
// w and height h. Its upper left corner is positioned at point (x, y). outline
// is true to draw a border with the current draw color and line width centered
// on the rectangle's perimeter. Only the outer half of the border will be
// shown. After calling this method, all rendering operations (for example,
// Image(), LinearGradient(), etc) will be clipped by the specified rectangle.
// Call ClipEnd() to restore unclipped operations.
//
// This ClipText() example demonstrates this method.
func (f *Fpdf) ClipRect(x, y, w, h float64, outline bool) {
f.clipNest++
f.outf("q %.2f %.2f %.2f %.2f re W %s", x*f.k, (f.h-y)*f.k, w*f.k, -h*f.k, strIf(outline, "S", "n"))
}
// ClipText begins a clipping operation in which rendering is confined to the
// character string specified by txtStr. The origin (x, y) is on the left of
// the first character at the baseline. The current font is used. outline is
// true to draw a border with the current draw color and line width centered on
// the perimeters of the text characters. Only the outer half of the border
// will be shown. After calling this method, all rendering operations (for
// example, Image(), LinearGradient(), etc) will be clipped. Call ClipEnd() to
// restore unclipped operations.
func (f *Fpdf) ClipText(x, y float64, txtStr string, outline bool) {
f.clipNest++
f.outf("q BT %.5f %.5f Td %d Tr (%s) Tj ET", x*f.k, (f.h-y)*f.k, intIf(outline, 5, 7), f.escape(txtStr))
}
func (f *Fpdf) clipArc(x1, y1, x2, y2, x3, y3 float64) {
h := f.h
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c ", x1*f.k, (h-y1)*f.k,
x2*f.k, (h-y2)*f.k, x3*f.k, (h-y3)*f.k)
}
// ClipRoundedRect begins a rectangular clipping operation. The rectangle is of
// width w and height h. Its upper left corner is positioned at point (x, y).
// The rounded corners of the rectangle are specified by radius r. outline is
// true to draw a border with the current draw color and line width centered on
// the rectangle's perimeter. Only the outer half of the border will be shown.
// After calling this method, all rendering operations (for example, Image(),
// LinearGradient(), etc) will be clipped by the specified rectangle. Call
// ClipEnd() to restore unclipped operations.
//
// This ClipText() example demonstrates this method.
func (f *Fpdf) ClipRoundedRect(x, y, w, h, r float64, outline bool) {
f.ClipRoundedRectExt(x, y, w, h, r, r, r, r, outline)
}
// ClipRoundedRectExt behaves the same as ClipRoundedRect() but supports a
// different radius for each corner, given by rTL (top-left), rTR (top-right)
// rBR (bottom-right), rBL (bottom-left). See ClipRoundedRect() for more
// details. This method is demonstrated in the ClipText() example.
func (f *Fpdf) ClipRoundedRectExt(x, y, w, h, rTL, rTR, rBR, rBL float64, outline bool) {
f.clipNest++
f.roundedRectPath(x, y, w, h, rTL, rTR, rBR, rBL)
f.outf(" W %s", strIf(outline, "S", "n"))
}
// add a rectangle path with rounded corners.
// routine shared by RoundedRect() and ClipRoundedRect(), which add the
// drawing operation
func (f *Fpdf) roundedRectPath(x, y, w, h, rTL, rTR, rBR, rBL float64) {
k := f.k
hp := f.h
myArc := (4.0 / 3.0) * (math.Sqrt2 - 1.0)
f.outf("q %.5f %.5f m", (x+rTL)*k, (hp-y)*k)
xc := x + w - rTR
yc := y + rTR
f.outf("%.5f %.5f l", xc*k, (hp-y)*k)
if rTR != 0 {
f.clipArc(xc+rTR*myArc, yc-rTR, xc+rTR, yc-rTR*myArc, xc+rTR, yc)
}
xc = x + w - rBR
yc = y + h - rBR
f.outf("%.5f %.5f l", (x+w)*k, (hp-yc)*k)
if rBR != 0 {
f.clipArc(xc+rBR, yc+rBR*myArc, xc+rBR*myArc, yc+rBR, xc, yc+rBR)
}
xc = x + rBL
yc = y + h - rBL
f.outf("%.5f %.5f l", xc*k, (hp-(y+h))*k)
if rBL != 0 {
f.clipArc(xc-rBL*myArc, yc+rBL, xc-rBL, yc+rBL*myArc, xc-rBL, yc)
}
xc = x + rTL
yc = y + rTL
f.outf("%.5f %.5f l", x*k, (hp-yc)*k)
if rTL != 0 {
f.clipArc(xc-rTL, yc-rTL*myArc, xc-rTL*myArc, yc-rTL, xc, yc-rTL)
}
}
// ClipEllipse begins an elliptical clipping operation. The ellipse is centered
// at (x, y). Its horizontal and vertical radii are specified by rx and ry.
// outline is true to draw a border with the current draw color and line width
// centered on the ellipse's perimeter. Only the outer half of the border will
// be shown. After calling this method, all rendering operations (for example,
// Image(), LinearGradient(), etc) will be clipped by the specified ellipse.
// Call ClipEnd() to restore unclipped operations.
//
// This ClipText() example demonstrates this method.
func (f *Fpdf) ClipEllipse(x, y, rx, ry float64, outline bool) {
f.clipNest++
lx := (4.0 / 3.0) * rx * (math.Sqrt2 - 1)
ly := (4.0 / 3.0) * ry * (math.Sqrt2 - 1)
k := f.k
h := f.h
f.outf("q %.5f %.5f m %.5f %.5f %.5f %.5f %.5f %.5f c",
(x+rx)*k, (h-y)*k,
(x+rx)*k, (h-(y-ly))*k,
(x+lx)*k, (h-(y-ry))*k,
x*k, (h-(y-ry))*k)
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c",
(x-lx)*k, (h-(y-ry))*k,
(x-rx)*k, (h-(y-ly))*k,
(x-rx)*k, (h-y)*k)
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c",
(x-rx)*k, (h-(y+ly))*k,
(x-lx)*k, (h-(y+ry))*k,
x*k, (h-(y+ry))*k)
f.outf("%.5f %.5f %.5f %.5f %.5f %.5f c W %s",
(x+lx)*k, (h-(y+ry))*k,
(x+rx)*k, (h-(y+ly))*k,
(x+rx)*k, (h-y)*k,
strIf(outline, "S", "n"))
}
// ClipCircle begins a circular clipping operation. The circle is centered at
// (x, y) and has radius r. outline is true to draw a border with the current
// draw color and line width centered on the circle's perimeter. Only the outer
// half of the border will be shown. After calling this method, all rendering
// operations (for example, Image(), LinearGradient(), etc) will be clipped by
// the specified circle. Call ClipEnd() to restore unclipped operations.
//
// The ClipText() example demonstrates this method.
func (f *Fpdf) ClipCircle(x, y, r float64, outline bool) {
f.ClipEllipse(x, y, r, r, outline)
}
// ClipPolygon begins a clipping operation within a polygon. The figure is
// defined by a series of vertices specified by points. The x and y fields of
// the points use the units established in New(). The last point in the slice
// will be implicitly joined to the first to close the polygon. outline is true
// to draw a border with the current draw color and line width centered on the
// polygon's perimeter. Only the outer half of the border will be shown. After
// calling this method, all rendering operations (for example, Image(),
// LinearGradient(), etc) will be clipped by the specified polygon. Call
// ClipEnd() to restore unclipped operations.
//
// The ClipText() example demonstrates this method.
func (f *Fpdf) ClipPolygon(points []PointType, outline bool) {
f.clipNest++
var s fmtBuffer
h := f.h
k := f.k
s.printf("q ")
for j, pt := range points {
s.printf("%.5f %.5f %s ", pt.X*k, (h-pt.Y)*k, strIf(j == 0, "m", "l"))
}
s.printf("h W %s", strIf(outline, "S", "n"))
f.out(s.String())
}
// ClipEnd ends a clipping operation that was started with a call to
// ClipRect(), ClipRoundedRect(), ClipText(), ClipEllipse(), ClipCircle() or
// ClipPolygon(). Clipping operations can be nested. The document cannot be
// successfully output while a clipping operation is active.
//
// The ClipText() example demonstrates this method.
func (f *Fpdf) ClipEnd() {
if f.err == nil {
if f.clipNest > 0 {
f.clipNest--
f.out("Q")
} else {
f.err = fmt.Errorf("error attempting to end clip operation out of sequence")
}
}
}
// AddFont imports a TrueType, OpenType or Type1 font and makes it available.
// It is necessary to generate a font definition file first with the makefont
// utility. It is not necessary to call this function for the core PDF fonts
// (courier, helvetica, times, zapfdingbats).
//
// The JSON definition file (and the font file itself when embedding) must be
// present in the font directory. If it is not found, the error "Could not
// include font definition file" is set.
//
// family specifies the font family. The name can be chosen arbitrarily. If it
// is a standard family name, it will override the corresponding font. This
// string is used to subsequently set the font with the SetFont method.
//
// style specifies the font style. Acceptable values are (case insensitive) the
// empty string for regular style, "B" for bold, "I" for italic, or "BI" or
// "IB" for bold and italic combined.
//
// fileStr specifies the base name with ".json" extension of the font
// definition file to be added. The file will be loaded from the font directory
// specified in the call to New() or SetFontLocation().
func (f *Fpdf) AddFont(familyStr, styleStr, fileStr string) {
f.addFont(fontFamilyEscape(familyStr), styleStr, fileStr, false)
}
// AddUTF8Font imports a TrueType font with utf-8 symbols and makes it available.
// It is necessary to generate a font definition file first with the makefont
// utility. It is not necessary to call this function for the core PDF fonts
// (courier, helvetica, times, zapfdingbats).
//
// The JSON definition file (and the font file itself when embedding) must be
// present in the font directory. If it is not found, the error "Could not
// include font definition file" is set.
//
// family specifies the font family. The name can be chosen arbitrarily. If it
// is a standard family name, it will override the corresponding font. This
// string is used to subsequently set the font with the SetFont method.
//
// style specifies the font style. Acceptable values are (case insensitive) the
// empty string for regular style, "B" for bold, "I" for italic, or "BI" or
// "IB" for bold and italic combined.
//
// fileStr specifies the base name with ".json" extension of the font
// definition file to be added. The file will be loaded from the font directory
// specified in the call to New() or SetFontLocation().
func (f *Fpdf) AddUTF8Font(familyStr, styleStr, fileStr string) {
f.addFont(fontFamilyEscape(familyStr), styleStr, fileStr, true)
}
func (f *Fpdf) addFont(familyStr, styleStr, fileStr string, isUTF8 bool) {
if fileStr == "" {
if isUTF8 {
fileStr = strings.Replace(familyStr, " ", "", -1) + strings.ToLower(styleStr) + ".ttf"
} else {
fileStr = strings.Replace(familyStr, " ", "", -1) + strings.ToLower(styleStr) + ".json"
}
}
if isUTF8 {
fontKey := getFontKey(familyStr, styleStr)
_, ok := f.fonts[fontKey]
if ok {
return
}
var ttfStat os.FileInfo
var err error
fileStr = path.Join(f.fontpath, fileStr)
ttfStat, err = os.Stat(fileStr)
if err != nil {
f.SetError(err)
return
}
originalSize := ttfStat.Size()
Type := "UTF8"
var utf8Bytes []byte
utf8Bytes, err = ioutil.ReadFile(fileStr)
if err != nil {
f.SetError(err)
return
}
reader := fileReader{readerPosition: 0, array: utf8Bytes}
utf8File := newUTF8Font(&reader)
err = utf8File.parseFile()
if err != nil {
f.SetError(err)
return
}
desc := FontDescType{
Ascent: int(utf8File.Ascent),
Descent: int(utf8File.Descent),
CapHeight: utf8File.CapHeight,
Flags: utf8File.Flags,
FontBBox: utf8File.Bbox,
ItalicAngle: utf8File.ItalicAngle,
StemV: utf8File.StemV,
MissingWidth: round(utf8File.DefaultWidth),
}
var sbarr map[int]int
if f.aliasNbPagesStr == "" {
sbarr = makeSubsetRange(57)
} else {
sbarr = makeSubsetRange(32)
}
def := fontDefType{
Tp: Type,
Name: fontKey,
Desc: desc,
Up: int(round(utf8File.UnderlinePosition)),
Ut: round(utf8File.UnderlineThickness),
Cw: utf8File.CharWidths,
usedRunes: sbarr,
File: fileStr,
utf8File: utf8File,
}
def.i, _ = generateFontID(def)
f.fonts[fontKey] = def
f.fontFiles[fontKey] = fontFileType{
length1: originalSize,
fontType: "UTF8",
}
f.fontFiles[fileStr] = fontFileType{
fontType: "UTF8",
}
} else {
if f.fontLoader != nil {
reader, err := f.fontLoader.Open(fileStr)
if err == nil {
f.AddFontFromReader(familyStr, styleStr, reader)
if closer, ok := reader.(io.Closer); ok {
closer.Close()
}
return
}
}
fileStr = path.Join(f.fontpath, fileStr)
file, err := os.Open(fileStr)
if err != nil {
f.err = err
return
}
defer file.Close()
f.AddFontFromReader(familyStr, styleStr, file)
}
}
func makeSubsetRange(end int) map[int]int {
answer := make(map[int]int)
for i := 0; i < end; i++ {
answer[i] = 0
}
return answer
}
// AddFontFromBytes imports a TrueType, OpenType or Type1 font from static
// bytes within the executable and makes it available for use in the generated
// document.
//
// family specifies the font family. The name can be chosen arbitrarily. If it
// is a standard family name, it will override the corresponding font. This
// string is used to subsequently set the font with the SetFont method.
//
// style specifies the font style. Acceptable values are (case insensitive) the
// empty string for regular style, "B" for bold, "I" for italic, or "BI" or
// "IB" for bold and italic combined.
//
// jsonFileBytes contain all bytes of JSON file.
//
// zFileBytes contain all bytes of Z file.
func (f *Fpdf) AddFontFromBytes(familyStr, styleStr string, jsonFileBytes, zFileBytes []byte) {
f.addFontFromBytes(fontFamilyEscape(familyStr), styleStr, jsonFileBytes, zFileBytes, nil)
}
// AddUTF8FontFromBytes imports a TrueType font with utf-8 symbols from static
// bytes within the executable and makes it available for use in the generated
// document.
//
// family specifies the font family. The name can be chosen arbitrarily. If it
// is a standard family name, it will override the corresponding font. This
// string is used to subsequently set the font with the SetFont method.
//
// style specifies the font style. Acceptable values are (case insensitive) the
// empty string for regular style, "B" for bold, "I" for italic, or "BI" or
// "IB" for bold and italic combined.
//
// jsonFileBytes contain all bytes of JSON file.
//
// zFileBytes contain all bytes of Z file.
func (f *Fpdf) AddUTF8FontFromBytes(familyStr, styleStr string, utf8Bytes []byte) {
f.addFontFromBytes(fontFamilyEscape(familyStr), styleStr, nil, nil, utf8Bytes)
}
func (f *Fpdf) addFontFromBytes(familyStr, styleStr string, jsonFileBytes, zFileBytes, utf8Bytes []byte) {
if f.err != nil {
return
}
// load font key
var ok bool
fontkey := getFontKey(familyStr, styleStr)
_, ok = f.fonts[fontkey]
if ok {
return
}
if utf8Bytes != nil {
// if styleStr == "IB" {
// styleStr = "BI"
// }
Type := "UTF8"
reader := fileReader{readerPosition: 0, array: utf8Bytes}
utf8File := newUTF8Font(&reader)
err := utf8File.parseFile()
if err != nil {
fmt.Printf("get metrics Error: %e\n", err)
return
}
desc := FontDescType{
Ascent: int(utf8File.Ascent),
Descent: int(utf8File.Descent),
CapHeight: utf8File.CapHeight,
Flags: utf8File.Flags,
FontBBox: utf8File.Bbox,
ItalicAngle: utf8File.ItalicAngle,
StemV: utf8File.StemV,
MissingWidth: round(utf8File.DefaultWidth),
}
var sbarr map[int]int
if f.aliasNbPagesStr == "" {
sbarr = makeSubsetRange(57)
} else {
sbarr = makeSubsetRange(32)
}
def := fontDefType{
Tp: Type,
Name: fontkey,
Desc: desc,
Up: int(round(utf8File.UnderlinePosition)),
Ut: round(utf8File.UnderlineThickness),
Cw: utf8File.CharWidths,
utf8File: utf8File,
usedRunes: sbarr,
}
def.i, _ = generateFontID(def)
f.fonts[fontkey] = def
} else {
// load font definitions
var info fontDefType
err := json.Unmarshal(jsonFileBytes, &info)
if err != nil {
f.err = err
}
if f.err != nil {
return
}
if info.i, err = generateFontID(info); err != nil {
f.err = err
return
}
// search existing encodings
if len(info.Diff) > 0 {
n := -1
for j, str := range f.diffs {
if str == info.Diff {
n = j + 1
break
}
}
if n < 0 {
f.diffs = append(f.diffs, info.Diff)
n = len(f.diffs)
}
info.DiffN = n
}
// embed font
if len(info.File) > 0 {
if info.Tp == "TrueType" {
f.fontFiles[info.File] = fontFileType{
length1: int64(info.OriginalSize),
embedded: true,
content: zFileBytes,
}
} else {
f.fontFiles[info.File] = fontFileType{
length1: int64(info.Size1),
length2: int64(info.Size2),
embedded: true,
content: zFileBytes,
}
}
}
f.fonts[fontkey] = info
}
}
// getFontKey is used by AddFontFromReader and GetFontDesc
func getFontKey(familyStr, styleStr string) string {
familyStr = strings.ToLower(familyStr)
styleStr = strings.ToUpper(styleStr)
if styleStr == "IB" {
styleStr = "BI"
}
return familyStr + styleStr
}
// AddFontFromReader imports a TrueType, OpenType or Type1 font and makes it
// available using a reader that satisifies the io.Reader interface. See
// AddFont for details about familyStr and styleStr.
func (f *Fpdf) AddFontFromReader(familyStr, styleStr string, r io.Reader) {
if f.err != nil {
return
}
// dbg("Adding family [%s], style [%s]", familyStr, styleStr)
familyStr = fontFamilyEscape(familyStr)
var ok bool
fontkey := getFontKey(familyStr, styleStr)
_, ok = f.fonts[fontkey]
if ok {
return
}
var info fontDefType
info = f.loadfont(r)
if f.err != nil {
return
}
if len(info.Diff) > 0 {
// Search existing encodings
n := -1
for j, str := range f.diffs {
if str == info.Diff {
n = j + 1
break
}
}
if n < 0 {
f.diffs = append(f.diffs, info.Diff)
n = len(f.diffs)
}
info.DiffN = n
}
// dbg("font [%s], type [%s]", info.File, info.Tp)
if len(info.File) > 0 {
// Embedded font
if info.Tp == "TrueType" {
f.fontFiles[info.File] = fontFileType{length1: int64(info.OriginalSize)}
} else {
f.fontFiles[info.File] = fontFileType{length1: int64(info.Size1), length2: int64(info.Size2)}
}
}
f.fonts[fontkey] = info
return
}
// GetFontDesc returns the font descriptor, which can be used for
// example to find the baseline of a font. If familyStr is empty
// current font descriptor will be returned.
// See FontDescType for documentation about the font descriptor.
// See AddFont for details about familyStr and styleStr.
func (f *Fpdf) GetFontDesc(familyStr, styleStr string) FontDescType {
if familyStr == "" {
return f.currentFont.Desc
}
return f.fonts[getFontKey(fontFamilyEscape(familyStr), styleStr)].Desc
}
// SetFont sets the font used to print character strings. It is mandatory to
// call this method at least once before printing text or the resulting
// document will not be valid.
//
// The font can be either a standard one or a font added via the AddFont()
// method or AddFontFromReader() method. Standard fonts use the Windows
// encoding cp1252 (Western Europe).
//
// The method can be called before the first page is created and the font is
// kept from page to page. If you just wish to change the current font size, it
// is simpler to call SetFontSize().
//
// Note: the font definition file must be accessible. An error is set if the
// file cannot be read.
//
// familyStr specifies the font family. It can be either a name defined by
// AddFont(), AddFontFromReader() or one of the standard families (case
// insensitive): "Courier" for fixed-width, "Helvetica" or "Arial" for sans
// serif, "Times" for serif, "Symbol" or "ZapfDingbats" for symbolic.
//
// styleStr can be "B" (bold), "I" (italic), "U" (underscore), "S" (strike-out)
// or any combination. The default value (specified with an empty string) is
// regular. Bold and italic styles do not apply to Symbol and ZapfDingbats.
//
// size is the font size measured in points. The default value is the current
// size. If no size has been specified since the beginning of the document, the
// value taken is 12.
func (f *Fpdf) SetFont(familyStr, styleStr string, size float64) {
// dbg("SetFont x %.2f, lMargin %.2f", f.x, f.lMargin)
if f.err != nil {
return
}
// dbg("SetFont")
familyStr = fontFamilyEscape(familyStr)
var ok bool
if familyStr == "" {
familyStr = f.fontFamily
} else {
familyStr = strings.ToLower(familyStr)
}
styleStr = strings.ToUpper(styleStr)
f.underline = strings.Contains(styleStr, "U")
if f.underline {
styleStr = strings.Replace(styleStr, "U", "", -1)
}
f.strikeout = strings.Contains(styleStr, "S")
if f.strikeout {
styleStr = strings.Replace(styleStr, "S", "", -1)
}
if styleStr == "IB" {
styleStr = "BI"
}
if size == 0.0 {
size = f.fontSizePt
}
// Test if font is already loaded
fontKey := familyStr + styleStr
_, ok = f.fonts[fontKey]
if !ok {
// Test if one of the core fonts
if familyStr == "arial" {
familyStr = "helvetica"
}
_, ok = f.coreFonts[familyStr]
if ok {
if familyStr == "symbol" {
familyStr = "zapfdingbats"
}
if familyStr == "zapfdingbats" {
styleStr = ""
}
fontKey = familyStr + styleStr
_, ok = f.fonts[fontKey]
if !ok {
rdr := f.coreFontReader(familyStr, styleStr)
if f.err == nil {
f.AddFontFromReader(familyStr, styleStr, rdr)
}
if f.err != nil {
return
}
}
} else {
f.err = fmt.Errorf("undefined font: %s %s", familyStr, styleStr)
return
}
}
// Select it
f.fontFamily = familyStr
f.fontStyle = styleStr
f.fontSizePt = size
f.fontSize = size / f.k
f.currentFont = f.fonts[fontKey]
if f.currentFont.Tp == "UTF8" {
f.isCurrentUTF8 = true
} else {
f.isCurrentUTF8 = false
}
if f.page > 0 {
f.outf("BT /F%s %.2f Tf ET", f.currentFont.i, f.fontSizePt)
}
return
}
// SetFontStyle sets the style of the current font. See also SetFont()
func (f *Fpdf) SetFontStyle(styleStr string) {
f.SetFont(f.fontFamily, styleStr, f.fontSizePt)
}
// SetFontSize defines the size of the current font. Size is specified in
// points (1/ 72 inch). See also SetFontUnitSize().
func (f *Fpdf) SetFontSize(size float64) {
f.fontSizePt = size
f.fontSize = size / f.k
if f.page > 0 {
f.outf("BT /F%s %.2f Tf ET", f.currentFont.i, f.fontSizePt)
}
}
// SetFontUnitSize defines the size of the current font. Size is specified in
// the unit of measure specified in New(). See also SetFontSize().
func (f *Fpdf) SetFontUnitSize(size float64) {
f.fontSizePt = size * f.k
f.fontSize = size
if f.page > 0 {
f.outf("BT /F%s %.2f Tf ET", f.currentFont.i, f.fontSizePt)
}
}
// GetFontSize returns the size of the current font in points followed by the
// size in the unit of measure specified in New(). The second value can be used
// as a line height value in drawing operations.
func (f *Fpdf) GetFontSize() (ptSize, unitSize float64) {
return f.fontSizePt, f.fontSize
}
// AddLink creates a new internal link and returns its identifier. An internal
// link is a clickable area which directs to another place within the document.
// The identifier can then be passed to Cell(), Write(), Image() or Link(). The
// destination is defined with SetLink().
func (f *Fpdf) AddLink() int {
f.links = append(f.links, intLinkType{})
return len(f.links) - 1
}
// SetLink defines the page and position a link points to. See AddLink().
func (f *Fpdf) SetLink(link int, y float64, page int) {
if y == -1 {
y = f.y
}
if page == -1 {
page = f.page
}
f.links[link] = intLinkType{page, y}
}
// newLink adds a new clickable link on current page
func (f *Fpdf) newLink(x, y, w, h float64, link int, linkStr string) {
// linkList, ok := f.pageLinks[f.page]
// if !ok {
// linkList = make([]linkType, 0, 8)
// f.pageLinks[f.page] = linkList
// }
f.pageLinks[f.page] = append(f.pageLinks[f.page],
linkType{x * f.k, f.hPt - y*f.k, w * f.k, h * f.k, link, linkStr})
}
// Link puts a link on a rectangular area of the page. Text or image links are
// generally put via Cell(), Write() or Image(), but this method can be useful
// for instance to define a clickable area inside an image. link is the value
// returned by AddLink().
func (f *Fpdf) Link(x, y, w, h float64, link int) {
f.newLink(x, y, w, h, link, "")
}
// LinkString puts a link on a rectangular area of the page. Text or image
// links are generally put via Cell(), Write() or Image(), but this method can
// be useful for instance to define a clickable area inside an image. linkStr
// is the target URL.
func (f *Fpdf) LinkString(x, y, w, h float64, linkStr string) {
f.newLink(x, y, w, h, 0, linkStr)
}
// Bookmark sets a bookmark that will be displayed in a sidebar outline. txtStr
// is the title of the bookmark. level specifies the level of the bookmark in
// the outline; 0 is the top level, 1 is just below, and so on. y specifies the
// vertical position of the bookmark destination in the current page; -1
// indicates the current position.
func (f *Fpdf) Bookmark(txtStr string, level int, y float64) {
if y == -1 {
y = f.y
}
if f.isCurrentUTF8 {
txtStr = utf8toutf16(txtStr)
}
f.outlines = append(f.outlines, outlineType{text: txtStr, level: level, y: y, p: f.PageNo(), prev: -1, last: -1, next: -1, first: -1})
}
// Text prints a character string. The origin (x, y) is on the left of the
// first character at the baseline. This method permits a string to be placed
// precisely on the page, but it is usually easier to use Cell(), MultiCell()
// or Write() which are the standard methods to print text.
func (f *Fpdf) Text(x, y float64, txtStr string) {
var txt2 string
if f.isCurrentUTF8 {
if f.isRTL {
txtStr = reverseText(txtStr)
x -= f.GetStringWidth(txtStr)
}
txt2 = f.escape(utf8toutf16(txtStr, false))
for _, uni := range []rune(txtStr) {
f.currentFont.usedRunes[int(uni)] = int(uni)
}
} else {
txt2 = f.escape(txtStr)
}
s := sprintf("BT %.2f %.2f Td (%s) Tj ET", x*f.k, (f.h-y)*f.k, txt2)
if f.underline && txtStr != "" {
s += " " + f.dounderline(x, y, txtStr)
}
if f.strikeout && txtStr != "" {
s += " " + f.dostrikeout(x, y, txtStr)
}
if f.colorFlag {
s = sprintf("q %s %s Q", f.color.text.str, s)
}
f.out(s)
}
// SetWordSpacing sets spacing between words of following text. See the
// WriteAligned() example for a demonstration of its use.
func (f *Fpdf) SetWordSpacing(space float64) {
f.out(sprintf("%.5f Tw", space*f.k))
}
// SetTextRenderingMode sets the rendering mode of following text.
// The mode can be as follows:
// 0: Fill text
// 1: Stroke text
// 2: Fill, then stroke text
// 3: Neither fill nor stroke text (invisible)
// 4: Fill text and add to path for clipping
// 5: Stroke text and add to path for clipping
// 6: Fills then stroke text and add to path for clipping
// 7: Add text to path for clipping
// This method is demonstrated in the SetTextRenderingMode example.
func (f *Fpdf) SetTextRenderingMode(mode int) {
if mode >= 0 && mode <= 7 {
f.out(sprintf("%d Tr", mode))
}
}
// SetAcceptPageBreakFunc allows the application to control where page breaks
// occur.
//
// fnc is an application function (typically a closure) that is called by the
// library whenever a page break condition is met. The break is issued if true
// is returned. The default implementation returns a value according to the
// mode selected by SetAutoPageBreak. The function provided should not be
// called by the application.
//
// See the example for SetLeftMargin() to see how this function can be used to
// manage multiple columns.
func (f *Fpdf) SetAcceptPageBreakFunc(fnc func() bool) {
f.acceptPageBreak = fnc
}
// CellFormat prints a rectangular cell with optional borders, background color
// and character string. The upper-left corner of the cell corresponds to the
// current position. The text can be aligned or centered. After the call, the
// current position moves to the right or to the next line. It is possible to
// put a link on the text.
//
// An error will be returned if a call to SetFont() has not already taken
// place before this method is called.
//
// If automatic page breaking is enabled and the cell goes beyond the limit, a
// page break is done before outputting.
//
// w and h specify the width and height of the cell. If w is 0, the cell
// extends up to the right margin. Specifying 0 for h will result in no output,
// but the current position will be advanced by w.
//
// txtStr specifies the text to display.
//
// borderStr specifies how the cell border will be drawn. An empty string
// indicates no border, "1" indicates a full border, and one or more of "L",
// "T", "R" and "B" indicate the left, top, right and bottom sides of the
// border.
//
// ln indicates where the current position should go after the call. Possible
// values are 0 (to the right), 1 (to the beginning of the next line), and 2
// (below). Putting 1 is equivalent to putting 0 and calling Ln() just after.
//
// alignStr specifies how the text is to be positioned within the cell.
// Horizontal alignment is controlled by including "L", "C" or "R" (left,
// center, right) in alignStr. Vertical alignment is controlled by including
// "T", "M", "B" or "A" (top, middle, bottom, baseline) in alignStr. The default
// alignment is left middle.
//
// fill is true to paint the cell background or false to leave it transparent.
//
// link is the identifier returned by AddLink() or 0 for no internal link.
//
// linkStr is a target URL or empty for no external link. A non--zero value for
// link takes precedence over linkStr.
func (f *Fpdf) CellFormat(w, h float64, txtStr, borderStr string, ln int,
alignStr string, fill bool, link int, linkStr string) {
// dbg("CellFormat. h = %.2f, borderStr = %s", h, borderStr)
if f.err != nil {
return
}
if f.currentFont.Name == "" {
f.err = fmt.Errorf("font has not been set; unable to render text")
return
}
borderStr = strings.ToUpper(borderStr)
k := f.k
if f.y+h > f.pageBreakTrigger && !f.inHeader && !f.inFooter && f.acceptPageBreak() {
// Automatic page break
x := f.x
ws := f.ws
// dbg("auto page break, x %.2f, ws %.2f", x, ws)
if ws > 0 {
f.ws = 0
f.out("0 Tw")
}
f.AddPageFormat(f.curOrientation, f.curPageSize)
if f.err != nil {
return
}
f.x = x
if ws > 0 {
f.ws = ws
f.outf("%.3f Tw", ws*k)
}
}
if w == 0 {
w = f.w - f.rMargin - f.x
}
var s fmtBuffer
if fill || borderStr == "1" {
var op string
if fill {
if borderStr == "1" {
op = "B"
// dbg("border is '1', fill")
} else {
op = "f"
// dbg("border is empty, fill")
}
} else {
// dbg("border is '1', no fill")
op = "S"
}
/// dbg("(CellFormat) f.x %.2f f.k %.2f", f.x, f.k)
s.printf("%.2f %.2f %.2f %.2f re %s ", f.x*k, (f.h-f.y)*k, w*k, -h*k, op)
}
if len(borderStr) > 0 && borderStr != "1" {
// fmt.Printf("border is '%s', no fill\n", borderStr)
x := f.x
y := f.y
left := x * k
top := (f.h - y) * k
right := (x + w) * k
bottom := (f.h - (y + h)) * k
if strings.Contains(borderStr, "L") {
s.printf("%.2f %.2f m %.2f %.2f l S ", left, top, left, bottom)
}
if strings.Contains(borderStr, "T") {
s.printf("%.2f %.2f m %.2f %.2f l S ", left, top, right, top)
}
if strings.Contains(borderStr, "R") {
s.printf("%.2f %.2f m %.2f %.2f l S ", right, top, right, bottom)
}
if strings.Contains(borderStr, "B") {
s.printf("%.2f %.2f m %.2f %.2f l S ", left, bottom, right, bottom)
}
}
if len(txtStr) > 0 {
var dx, dy float64
// Horizontal alignment
switch {
case strings.Contains(alignStr, "R"):
dx = w - f.cMargin - f.GetStringWidth(txtStr)
case strings.Contains(alignStr, "C"):
dx = (w - f.GetStringWidth(txtStr)) / 2
default:
dx = f.cMargin
}
// Vertical alignment
switch {
case strings.Contains(alignStr, "T"):
dy = (f.fontSize - h) / 2.0
case strings.Contains(alignStr, "B"):
dy = (h - f.fontSize) / 2.0
case strings.Contains(alignStr, "A"):
var descent float64
d := f.currentFont.Desc
if d.Descent == 0 {
// not defined (standard font?), use average of 19%
descent = -0.19 * f.fontSize
} else {
descent = float64(d.Descent) * f.fontSize / float64(d.Ascent-d.Descent)
}
dy = (h-f.fontSize)/2.0 - descent
default:
dy = 0
}
if f.colorFlag {
s.printf("q %s ", f.color.text.str)
}
//If multibyte, Tw has no effect - do word spacing using an adjustment before each space
if (f.ws != 0 || alignStr == "J") && f.isCurrentUTF8 { // && f.ws != 0
if f.isRTL {
txtStr = reverseText(txtStr)
}
wmax := int(math.Ceil((w - 2*f.cMargin) * 1000 / f.fontSize))
for _, uni := range []rune(txtStr) {
f.currentFont.usedRunes[int(uni)] = int(uni)
}
space := f.escape(utf8toutf16(" ", false))
strSize := f.GetStringSymbolWidth(txtStr)
s.printf("BT 0 Tw %.2f %.2f Td [", (f.x+dx)*k, (f.h-(f.y+.5*h+.3*f.fontSize))*k)
t := strings.Split(txtStr, " ")
shift := float64((wmax - strSize)) / float64(len(t)-1)
numt := len(t)
for i := 0; i < numt; i++ {
tx := t[i]
tx = "(" + f.escape(utf8toutf16(tx, false)) + ")"
s.printf("%s ", tx)
if (i + 1) < numt {
s.printf("%.3f(%s) ", -shift, space)
}
}
s.printf("] TJ ET")
} else {
var txt2 string
if f.isCurrentUTF8 {
if f.isRTL {
txtStr = reverseText(txtStr)
}
txt2 = f.escape(utf8toutf16(txtStr, false))
for _, uni := range []rune(txtStr) {
f.currentFont.usedRunes[int(uni)] = int(uni)
}
} else {
txt2 = strings.Replace(txtStr, "\\", "\\\\", -1)
txt2 = strings.Replace(txt2, "(", "\\(", -1)
txt2 = strings.Replace(txt2, ")", "\\)", -1)
}
bt := (f.x + dx) * k
td := (f.h - (f.y + dy + .5*h + .3*f.fontSize)) * k
s.printf("BT %.2f %.2f Td (%s)Tj ET", bt, td, txt2)
//BT %.2F %.2F Td (%s) Tj ET',(f.x+dx)*k,(f.h-(f.y+.5*h+.3*f.FontSize))*k,txt2);
}
if f.underline {
s.printf(" %s", f.dounderline(f.x+dx, f.y+dy+.5*h+.3*f.fontSize, txtStr))
}
if f.strikeout {
s.printf(" %s", f.dostrikeout(f.x+dx, f.y+dy+.5*h+.3*f.fontSize, txtStr))
}
if f.colorFlag {
s.printf(" Q")
}
if link > 0 || len(linkStr) > 0 {
f.newLink(f.x+dx, f.y+dy+.5*h-.5*f.fontSize, f.GetStringWidth(txtStr), f.fontSize, link, linkStr)
}
}
str := s.String()
if len(str) > 0 {
f.out(str)
}
f.lasth = h
if ln > 0 {
// Go to next line
f.y += h
if ln == 1 {
f.x = f.lMargin
}
} else {
f.x += w
}
return
}
// Revert string to use in RTL languages
func reverseText(text string) string {
oldText := []rune(text)
newText := make([]rune, len(oldText))
length := len(oldText) - 1
for i, r := range oldText {
newText[length-i] = r
}
return string(newText)
}
// Cell is a simpler version of CellFormat with no fill, border, links or
// special alignment. The Cell_strikeout() example demonstrates this method.
func (f *Fpdf) Cell(w, h float64, txtStr string) {
f.CellFormat(w, h, txtStr, "", 0, "L", false, 0, "")
}
// Cellf is a simpler printf-style version of CellFormat with no fill, border,
// links or special alignment. See documentation for the fmt package for
// details on fmtStr and args.
func (f *Fpdf) Cellf(w, h float64, fmtStr string, args ...interface{}) {
f.CellFormat(w, h, sprintf(fmtStr, args...), "", 0, "L", false, 0, "")
}
// SplitLines splits text into several lines using the current font. Each line
// has its length limited to a maximum width given by w. This function can be
// used to determine the total height of wrapped text for vertical placement
// purposes.
//
// This method is useful for codepage-based fonts only. For UTF-8 encoded text,
// use SplitText().
//
// You can use MultiCell if you want to print a text on several lines in a
// simple way.
func (f *Fpdf) SplitLines(txt []byte, w float64) [][]byte {
// Function contributed by Bruno Michel
lines := [][]byte{}
cw := f.currentFont.Cw
wmax := int(math.Ceil((w - 2*f.cMargin) * 1000 / f.fontSize))
s := bytes.Replace(txt, []byte("\r"), []byte{}, -1)
nb := len(s)
for nb > 0 && s[nb-1] == '\n' {
nb--
}
s = s[0:nb]
sep := -1
i := 0
j := 0
l := 0
for i < nb {
c := s[i]
l += cw[c]
if c == ' ' || c == '\t' || c == '\n' {
sep = i
}
if c == '\n' || l > wmax {
if sep == -1 {
if i == j {
i++
}
sep = i
} else {
i = sep + 1
}
lines = append(lines, s[j:sep])
sep = -1
j = i
l = 0
} else {
i++
}
}
if i != j {
lines = append(lines, s[j:i])
}
return lines
}
// MultiCell supports printing text with line breaks. They can be automatic (as
// soon as the text reaches the right border of the cell) or explicit (via the
// \n character). As many cells as necessary are output, one below the other.
//
// Text can be aligned, centered or justified. The cell block can be framed and
// the background painted. See CellFormat() for more details.
//
// The current position after calling MultiCell() is the beginning of the next
// line, equivalent to calling CellFormat with ln equal to 1.
//
// w is the width of the cells. A value of zero indicates cells that reach to
// the right margin.
//
// h indicates the line height of each cell in the unit of measure specified in New().
//
// Note: this method has a known bug that treats UTF-8 fonts differently than
// non-UTF-8 fonts. With UTF-8 fonts, all trailing newlines in txtStr are
// removed. With a non-UTF-8 font, if txtStr has one or more trailing newlines,
// only the last is removed. In the next major module version, the UTF-8 logic
// will be changed to match the non-UTF-8 logic. To prepare for that change,
// applications that use UTF-8 fonts and depend on having all trailing newlines
// removed should call strings.TrimRight(txtStr, "\r\n") before calling this
// method.
func (f *Fpdf) MultiCell(w, h float64, txtStr, borderStr, alignStr string, fill bool) {
if f.err != nil {
return
}
// dbg("MultiCell")
if alignStr == "" {
alignStr = "J"
}
cw := f.currentFont.Cw
if w == 0 {
w = f.w - f.rMargin - f.x
}
wmax := int(math.Ceil((w - 2*f.cMargin) * 1000 / f.fontSize))
s := strings.Replace(txtStr, "\r", "", -1)
srune := []rune(s)
// remove extra line breaks
var nb int
if f.isCurrentUTF8 {
nb = len(srune)
for nb > 0 && srune[nb-1] == '\n' {
nb--
}
srune = srune[0:nb]
} else {
nb = len(s)
bytes2 := []byte(s)
// for nb > 0 && bytes2[nb-1] == '\n' {
// Prior to August 2019, if s ended with a newline, this code stripped it.
// After that date, to be compatible with the UTF-8 code above, *all*
// trailing newlines were removed. Because this regression caused at least
// one application to break (see issue #333), the original behavior has been
// reinstated with a caveat included in the documentation.
if nb > 0 && bytes2[nb-1] == '\n' {
nb--
}
s = s[0:nb]
}
// dbg("[%s]\n", s)
var b, b2 string
b = "0"
if len(borderStr) > 0 {
if borderStr == "1" {
borderStr = "LTRB"
b = "LRT"
b2 = "LR"
} else {
b2 = ""
if strings.Contains(borderStr, "L") {
b2 += "L"
}
if strings.Contains(borderStr, "R") {
b2 += "R"
}
if strings.Contains(borderStr, "T") {
b = b2 + "T"
} else {
b = b2
}
}
}
sep := -1
i := 0
j := 0
l := 0
ls := 0
ns := 0
nl := 1
for i < nb {
// Get next character
var c rune
if f.isCurrentUTF8 {
c = srune[i]
} else {
c = rune(s[i])
}
if c == '\n' {
// Explicit line break
if f.ws > 0 {
f.ws = 0
f.out("0 Tw")
}
if f.isCurrentUTF8 {
newAlignStr := alignStr
if newAlignStr == "J" {
if f.isRTL {
newAlignStr = "R"
} else {
newAlignStr = "L"
}
}
f.CellFormat(w, h, string(srune[j:i]), b, 2, newAlignStr, fill, 0, "")
} else {
f.CellFormat(w, h, s[j:i], b, 2, alignStr, fill, 0, "")
}
i++
sep = -1
j = i
l = 0
ns = 0
nl++
if len(borderStr) > 0 && nl == 2 {
b = b2
}
continue
}
if c == ' ' || isChinese(c) {
sep = i
ls = l
ns++
}
if int(c) >= len(cw) {
f.err = fmt.Errorf("character outside the supported range: %s", string(c))
return
}
if cw[int(c)] == 0 { //Marker width 0 used for missing symbols
l += f.currentFont.Desc.MissingWidth
} else if cw[int(c)] != 65535 { //Marker width 65535 used for zero width symbols
l += cw[int(c)]
}
if l > wmax {
// Automatic line break
if sep == -1 {
if i == j {
i++
}
if f.ws > 0 {
f.ws = 0
f.out("0 Tw")
}
if f.isCurrentUTF8 {
f.CellFormat(w, h, string(srune[j:i]), b, 2, alignStr, fill, 0, "")
} else {
f.CellFormat(w, h, s[j:i], b, 2, alignStr, fill, 0, "")
}
} else {
if alignStr == "J" {
if ns > 1 {
f.ws = float64((wmax-ls)/1000) * f.fontSize / float64(ns-1)
} else {
f.ws = 0
}
f.outf("%.3f Tw", f.ws*f.k)
}
if f.isCurrentUTF8 {
f.CellFormat(w, h, string(srune[j:sep]), b, 2, alignStr, fill, 0, "")
} else {
f.CellFormat(w, h, s[j:sep], b, 2, alignStr, fill, 0, "")
}
i = sep + 1
}
sep = -1
j = i
l = 0
ns = 0
nl++
if len(borderStr) > 0 && nl == 2 {
b = b2
}
} else {
i++
}
}
// Last chunk
if f.ws > 0 {
f.ws = 0
f.out("0 Tw")
}
if len(borderStr) > 0 && strings.Contains(borderStr, "B") {
b += "B"
}
if f.isCurrentUTF8 {
if alignStr == "J" {
if f.isRTL {
alignStr = "R"
} else {
alignStr = ""
}
}
f.CellFormat(w, h, string(srune[j:i]), b, 2, alignStr, fill, 0, "")
} else {
f.CellFormat(w, h, s[j:i], b, 2, alignStr, fill, 0, "")
}
f.x = f.lMargin
}
// write outputs text in flowing mode
func (f *Fpdf) write(h float64, txtStr string, link int, linkStr string) {
// dbg("Write")
cw := f.currentFont.Cw
w := f.w - f.rMargin - f.x
wmax := (w - 2*f.cMargin) * 1000 / f.fontSize
s := strings.Replace(txtStr, "\r", "", -1)
var nb int
if f.isCurrentUTF8 {
nb = len([]rune(s))
if nb == 1 && s == " " {
f.x += f.GetStringWidth(s)
return
}
} else {
nb = len(s)
}
sep := -1
i := 0
j := 0
l := 0.0
nl := 1
for i < nb {
// Get next character
var c rune
if f.isCurrentUTF8 {
c = []rune(s)[i]
} else {
c = rune(byte(s[i]))
}
if c == '\n' {
// Explicit line break
if f.isCurrentUTF8 {
f.CellFormat(w, h, string([]rune(s)[j:i]), "", 2, "", false, link, linkStr)
} else {
f.CellFormat(w, h, s[j:i], "", 2, "", false, link, linkStr)
}
i++
sep = -1
j = i
l = 0.0
if nl == 1 {
f.x = f.lMargin
w = f.w - f.rMargin - f.x
wmax = (w - 2*f.cMargin) * 1000 / f.fontSize
}
nl++
continue
}
if c == ' ' {
sep = i
}
l += float64(cw[int(c)])
if l > wmax {
// Automatic line break
if sep == -1 {
if f.x > f.lMargin {
// Move to next line
f.x = f.lMargin
f.y += h
w = f.w - f.rMargin - f.x
wmax = (w - 2*f.cMargin) * 1000 / f.fontSize
i++
nl++
continue
}
if i == j {
i++
}
if f.isCurrentUTF8 {
f.CellFormat(w, h, string([]rune(s)[j:i]), "", 2, "", false, link, linkStr)
} else {
f.CellFormat(w, h, s[j:i], "", 2, "", false, link, linkStr)
}
} else {
if f.isCurrentUTF8 {
f.CellFormat(w, h, string([]rune(s)[j:sep]), "", 2, "", false, link, linkStr)
} else {
f.CellFormat(w, h, s[j:sep], "", 2, "", false, link, linkStr)
}
i = sep + 1
}
sep = -1
j = i
l = 0.0
if nl == 1 {
f.x = f.lMargin
w = f.w - f.rMargin - f.x
wmax = (w - 2*f.cMargin) * 1000 / f.fontSize
}
nl++
} else {
i++
}
}
// Last chunk
if i != j {
if f.isCurrentUTF8 {
f.CellFormat(l/1000*f.fontSize, h, string([]rune(s)[j:]), "", 0, "", false, link, linkStr)
} else {
f.CellFormat(l/1000*f.fontSize, h, s[j:], "", 0, "", false, link, linkStr)
}
}
}
// Write prints text from the current position. When the right margin is
// reached (or the \n character is met) a line break occurs and text continues
// from the left margin. Upon method exit, the current position is left just at
// the end of the text.
//
// It is possible to put a link on the text.
//
// h indicates the line height in the unit of measure specified in New().
func (f *Fpdf) Write(h float64, txtStr string) {
f.write(h, txtStr, 0, "")
}
// Writef is like Write but uses printf-style formatting. See the documentation
// for package fmt for more details on fmtStr and args.
func (f *Fpdf) Writef(h float64, fmtStr string, args ...interface{}) {
f.write(h, sprintf(fmtStr, args...), 0, "")
}
// WriteLinkString writes text that when clicked launches an external URL. See
// Write() for argument details.
func (f *Fpdf) WriteLinkString(h float64, displayStr, targetStr string) {
f.write(h, displayStr, 0, targetStr)
}
// WriteLinkID writes text that when clicked jumps to another location in the
// PDF. linkID is an identifier returned by AddLink(). See Write() for argument
// details.
func (f *Fpdf) WriteLinkID(h float64, displayStr string, linkID int) {
f.write(h, displayStr, linkID, "")
}
// WriteAligned is an implementation of Write that makes it possible to align
// text.
//
// width indicates the width of the box the text will be drawn in. This is in
// the unit of measure specified in New(). If it is set to 0, the bounding box
//of the page will be taken (pageWidth - leftMargin - rightMargin).
//
// lineHeight indicates the line height in the unit of measure specified in
// New().
//
// alignStr sees to horizontal alignment of the given textStr. The options are
// "L", "C" and "R" (Left, Center, Right). The default is "L".
func (f *Fpdf) WriteAligned(width, lineHeight float64, textStr, alignStr string) {
lMargin, _, rMargin, _ := f.GetMargins()
pageWidth, _ := f.GetPageSize()
if width == 0 {
width = pageWidth - (lMargin + rMargin)
}
var lines []string
if f.isCurrentUTF8 {
lines = f.SplitText(textStr, width)
} else {
for _, line := range f.SplitLines([]byte(textStr), width) {
lines = append(lines, string(line))
}
}
for _, lineBt := range lines {
lineStr := string(lineBt)
lineWidth := f.GetStringWidth(lineStr)
switch alignStr {
case "C":
f.SetLeftMargin(lMargin + ((width - lineWidth) / 2))
f.Write(lineHeight, lineStr)
f.SetLeftMargin(lMargin)
case "R":
f.SetLeftMargin(lMargin + (width - lineWidth) - 2.01*f.cMargin)
f.Write(lineHeight, lineStr)
f.SetLeftMargin(lMargin)
default:
f.SetRightMargin(pageWidth - lMargin - width)
f.Write(lineHeight, lineStr)
f.SetRightMargin(rMargin)
}
}
}
// Ln performs a line break. The current abscissa goes back to the left margin
// and the ordinate increases by the amount passed in parameter. A negative
// value of h indicates the height of the last printed cell.
//
// This method is demonstrated in the example for MultiCell.
func (f *Fpdf) Ln(h float64) {
f.x = f.lMargin
if h < 0 {
f.y += f.lasth
} else {
f.y += h
}
}
// ImageTypeFromMime returns the image type used in various image-related
// functions (for example, Image()) that is associated with the specified MIME
// type. For example, "jpg" is returned if mimeStr is "image/jpeg". An error is
// set if the specified MIME type is not supported.
func (f *Fpdf) ImageTypeFromMime(mimeStr string) (tp string) {
switch mimeStr {
case "image/png":
tp = "png"
case "image/jpg":
tp = "jpg"
case "image/jpeg":
tp = "jpg"
case "image/gif":
tp = "gif"
default:
f.SetErrorf("unsupported image type: %s", mimeStr)
}
return
}
func (f *Fpdf) imageOut(info *ImageInfoType, x, y, w, h float64, allowNegativeX, flow bool, link int, linkStr string) {
// Automatic width and height calculation if needed
if w == 0 && h == 0 {
// Put image at 96 dpi
w = -96
h = -96
}
if w == -1 {
// Set image width to whatever value for dpi we read
// from the image or that was set manually
w = -info.dpi
}
if h == -1 {
// Set image height to whatever value for dpi we read
// from the image or that was set manually
h = -info.dpi
}
if w < 0 {
w = -info.w * 72.0 / w / f.k
}
if h < 0 {
h = -info.h * 72.0 / h / f.k
}
if w == 0 {
w = h * info.w / info.h
}
if h == 0 {
h = w * info.h / info.w
}
// Flowing mode
if flow {
if f.y+h > f.pageBreakTrigger && !f.inHeader && !f.inFooter && f.acceptPageBreak() {
// Automatic page break
x2 := f.x
f.AddPageFormat(f.curOrientation, f.curPageSize)
if f.err != nil {
return
}
f.x = x2
}
y = f.y
f.y += h
}
if !allowNegativeX {
if x < 0 {
x = f.x
}
}
// dbg("h %.2f", h)
// q 85.04 0 0 NaN 28.35 NaN cm /I2 Do Q
f.outf("q %.5f 0 0 %.5f %.5f %.5f cm /I%s Do Q", w*f.k, h*f.k, x*f.k, (f.h-(y+h))*f.k, info.i)
if link > 0 || len(linkStr) > 0 {
f.newLink(x, y, w, h, link, linkStr)
}
}
// Image puts a JPEG, PNG or GIF image in the current page.
//
// Deprecated in favor of ImageOptions -- see that function for
// details on the behavior of arguments
func (f *Fpdf) Image(imageNameStr string, x, y, w, h float64, flow bool, tp string, link int, linkStr string) {
options := ImageOptions{
ReadDpi: false,
ImageType: tp,
}
f.ImageOptions(imageNameStr, x, y, w, h, flow, options, link, linkStr)
}
// ImageOptions puts a JPEG, PNG or GIF image in the current page. The size it
// will take on the page can be specified in different ways. If both w and h
// are 0, the image is rendered at 96 dpi. If either w or h is zero, it will be
// calculated from the other dimension so that the aspect ratio is maintained.
// If w and/or h are -1, the dpi for that dimension will be read from the
// ImageInfoType object. PNG files can contain dpi information, and if present,
// this information will be populated in the ImageInfoType object and used in
// Width, Height, and Extent calculations. Otherwise, the SetDpi function can
// be used to change the dpi from the default of 72.
//
// If w and h are any other negative value, their absolute values
// indicate their dpi extents.
//
// Supported JPEG formats are 24 bit, 32 bit and gray scale. Supported PNG
// formats are 24 bit, indexed color, and 8 bit indexed gray scale. If a GIF
// image is animated, only the first frame is rendered. Transparency is
// supported. It is possible to put a link on the image.
//
// imageNameStr may be the name of an image as registered with a call to either
// RegisterImageReader() or RegisterImage(). In the first case, the image is
// loaded using an io.Reader. This is generally useful when the image is
// obtained from some other means than as a disk-based file. In the second
// case, the image is loaded as a file. Alternatively, imageNameStr may
// directly specify a sufficiently qualified filename.
//
// However the image is loaded, if it is used more than once only one copy is
// embedded in the file.
//
// If x is negative, the current abscissa is used.
//
// If flow is true, the current y value is advanced after placing the image and
// a page break may be made if necessary.
//
// If link refers to an internal page anchor (that is, it is non-zero; see
// AddLink()), the image will be a clickable internal link. Otherwise, if
// linkStr specifies a URL, the image will be a clickable external link.
func (f *Fpdf) ImageOptions(imageNameStr string, x, y, w, h float64, flow bool, options ImageOptions, link int, linkStr string) {
if f.err != nil {
return
}
info := f.RegisterImageOptions(imageNameStr, options)
if f.err != nil {
return
}
f.imageOut(info, x, y, w, h, options.AllowNegativePosition, flow, link, linkStr)
return
}
// RegisterImageReader registers an image, reading it from Reader r, adding it
// to the PDF file but not adding it to the page.
//
// This function is now deprecated in favor of RegisterImageOptionsReader
func (f *Fpdf) RegisterImageReader(imgName, tp string, r io.Reader) (info *ImageInfoType) {
options := ImageOptions{
ReadDpi: false,
ImageType: tp,
}
return f.RegisterImageOptionsReader(imgName, options, r)
}
// ImageOptions provides a place to hang any options we want to use while
// parsing an image.
//
// ImageType's possible values are (case insensitive):
// "JPG", "JPEG", "PNG" and "GIF". If empty, the type is inferred from
// the file extension.
//
// ReadDpi defines whether to attempt to automatically read the image
// dpi information from the image file. Normally, this should be set
// to true (understanding that not all images will have this info
// available). However, for backwards compatibility with previous
// versions of the API, it defaults to false.
//
// AllowNegativePosition can be set to true in order to prevent the default
// coercion of negative x values to the current x position.
type ImageOptions struct {
ImageType string
ReadDpi bool
AllowNegativePosition bool
}
// RegisterImageOptionsReader registers an image, reading it from Reader r, adding it
// to the PDF file but not adding it to the page. Use Image() with the same
// name to add the image to the page. Note that tp should be specified in this
// case.
//
// See Image() for restrictions on the image and the options parameters.
func (f *Fpdf) RegisterImageOptionsReader(imgName string, options ImageOptions, r io.Reader) (info *ImageInfoType) {
// Thanks, Ivan Daniluk, for generalizing this code to use the Reader interface.
if f.err != nil {
return
}
info, ok := f.images[imgName]
if ok {
return
}
// First use of this image, get info
if options.ImageType == "" {
f.err = fmt.Errorf("image type should be specified if reading from custom reader")
return
}
options.ImageType = strings.ToLower(options.ImageType)
if options.ImageType == "jpeg" {
options.ImageType = "jpg"
}
switch options.ImageType {
case "jpg":
info = f.parsejpg(r)
case "png":
info = f.parsepng(r, options.ReadDpi)
case "gif":
info = f.parsegif(r)
default:
f.err = fmt.Errorf("unsupported image type: %s", options.ImageType)
}
if f.err != nil {
return
}
if info.i, f.err = generateImageID(info); f.err != nil {
return
}
f.images[imgName] = info
return
}
// RegisterImage registers an image, adding it to the PDF file but not adding
// it to the page. Use Image() with the same filename to add the image to the
// page. Note that Image() calls this function, so this function is only
// necessary if you need information about the image before placing it.
//
// This function is now deprecated in favor of RegisterImageOptions.
// See Image() for restrictions on the image and the "tp" parameters.
func (f *Fpdf) RegisterImage(fileStr, tp string) (info *ImageInfoType) {
options := ImageOptions{
ReadDpi: false,
ImageType: tp,
}
return f.RegisterImageOptions(fileStr, options)
}
// RegisterImageOptions registers an image, adding it to the PDF file but not
// adding it to the page. Use Image() with the same filename to add the image
// to the page. Note that Image() calls this function, so this function is only
// necessary if you need information about the image before placing it. See
// Image() for restrictions on the image and the "tp" parameters.
func (f *Fpdf) RegisterImageOptions(fileStr string, options ImageOptions) (info *ImageInfoType) {
info, ok := f.images[fileStr]
if ok {
return
}
file, err := os.Open(fileStr)
if err != nil {
f.err = err
return
}
defer file.Close()
// First use of this image, get info
if options.ImageType == "" {
pos := strings.LastIndex(fileStr, ".")
if pos < 0 {
f.err = fmt.Errorf("image file has no extension and no type was specified: %s", fileStr)
return
}
options.ImageType = fileStr[pos+1:]
}
return f.RegisterImageOptionsReader(fileStr, options, file)
}
// GetImageInfo returns information about the registered image specified by
// imageStr. If the image has not been registered, nil is returned. The
// internal error is not modified by this method.
func (f *Fpdf) GetImageInfo(imageStr string) (info *ImageInfoType) {
return f.images[imageStr]
}
// ImportObjects imports objects from gofpdi into current document
func (f *Fpdf) ImportObjects(objs map[string][]byte) {
for k, v := range objs {
f.importedObjs[k] = v
}
}
// ImportObjPos imports object hash positions from gofpdi
func (f *Fpdf) ImportObjPos(objPos map[string]map[int]string) {
for k, v := range objPos {
f.importedObjPos[k] = v
}
}
// putImportedTemplates writes the imported template objects to the PDF
func (f *Fpdf) putImportedTemplates() {
nOffset := f.n + 1
// keep track of list of sha1 hashes (to be replaced with integers)
objsIDHash := make([]string, len(f.importedObjs))
// actual object data with new id
objsIDData := make([][]byte, len(f.importedObjs))
// Populate hash slice and data slice
i := 0
for k, v := range f.importedObjs {
objsIDHash[i] = k
objsIDData[i] = v
i++
}
// Populate a lookup table to get an object id from a hash
hashToObjID := make(map[string]int, len(f.importedObjs))
for i = 0; i < len(objsIDHash); i++ {
hashToObjID[objsIDHash[i]] = i + nOffset
}
// Now, replace hashes inside data with %040d object id
for i = 0; i < len(objsIDData); i++ {
// get hash
hash := objsIDHash[i]
for pos, h := range f.importedObjPos[hash] {
// Convert object id into a 40 character string padded with spaces
objIDPadded := fmt.Sprintf("%40s", fmt.Sprintf("%d", hashToObjID[h]))
// Convert objIDPadded into []byte
objIDBytes := []byte(objIDPadded)
// Replace sha1 hash with object id padded
for j := pos; j < pos+40; j++ {
objsIDData[i][j] = objIDBytes[j-pos]
}
}
// Save objsIDHash so that procset dictionary has the correct object ids
f.importedTplIDs[hash] = i + nOffset
}
// Now, put objects
for i = 0; i < len(objsIDData); i++ {
f.newobj()
f.out(string(objsIDData[i]))
}
}
// UseImportedTemplate uses imported template from gofpdi. It draws imported
// PDF page onto page.
func (f *Fpdf) UseImportedTemplate(tplName string, scaleX float64, scaleY float64, tX float64, tY float64) {
f.outf("q 0 J 1 w 0 j 0 G 0 g q %.4F 0 0 %.4F %.4F %.4F cm %s Do Q Q\n", scaleX*f.k, scaleY*f.k, tX*f.k, (tY+f.h)*f.k, tplName)
}
// ImportTemplates imports gofpdi template names into importedTplObjs for
// inclusion in the procset dictionary
func (f *Fpdf) ImportTemplates(tpls map[string]string) {
for tplName, tplID := range tpls {
f.importedTplObjs[tplName] = tplID
}
}
// GetConversionRatio returns the conversion ratio based on the unit given when
// creating the PDF.
func (f *Fpdf) GetConversionRatio() float64 {
return f.k
}
// GetXY returns the abscissa and ordinate of the current position.
//
// Note: the value returned for the abscissa will be affected by the current
// cell margin. To account for this, you may need to either add the value
// returned by GetCellMargin() to it or call SetCellMargin(0) to remove the
// cell margin.
func (f *Fpdf) GetXY() (float64, float64) {
return f.x, f.y
}
// GetX returns the abscissa of the current position.
//
// Note: the value returned will be affected by the current cell margin. To
// account for this, you may need to either add the value returned by
// GetCellMargin() to it or call SetCellMargin(0) to remove the cell margin.
func (f *Fpdf) GetX() float64 {
return f.x
}
// SetX defines the abscissa of the current position. If the passed value is
// negative, it is relative to the right of the page.
func (f *Fpdf) SetX(x float64) {
if x >= 0 {
f.x = x
} else {
f.x = f.w + x
}
}
// GetY returns the ordinate of the current position.
func (f *Fpdf) GetY() float64 {
return f.y
}
// SetY moves the current abscissa back to the left margin and sets the
// ordinate. If the passed value is negative, it is relative to the bottom of
// the page.
func (f *Fpdf) SetY(y float64) {
// dbg("SetY x %.2f, lMargin %.2f", f.x, f.lMargin)
f.x = f.lMargin
if y >= 0 {
f.y = y
} else {
f.y = f.h + y
}
}
// SetHomeXY is a convenience method that sets the current position to the left
// and top margins.
func (f *Fpdf) SetHomeXY() {
f.SetY(f.tMargin)
f.SetX(f.lMargin)
}
// SetXY defines the abscissa and ordinate of the current position. If the
// passed values are negative, they are relative respectively to the right and
// bottom of the page.
func (f *Fpdf) SetXY(x, y float64) {
f.SetY(y)
f.SetX(x)
}
// SetProtection applies certain constraints on the finished PDF document.
//
// actionFlag is a bitflag that controls various document operations.
// CnProtectPrint allows the document to be printed. CnProtectModify allows a
// document to be modified by a PDF editor. CnProtectCopy allows text and
// images to be copied into the system clipboard. CnProtectAnnotForms allows
// annotations and forms to be added by a PDF editor. These values can be
// combined by or-ing them together, for example,
// CnProtectCopy|CnProtectModify. This flag is advisory; not all PDF readers
// implement the constraints that this argument attempts to control.
//
// userPassStr specifies the password that will need to be provided to view the
// contents of the PDF. The permissions specified by actionFlag will apply.
//
// ownerPassStr specifies the password that will need to be provided to gain
// full access to the document regardless of the actionFlag value. An empty
// string for this argument will be replaced with a random value, effectively
// prohibiting full access to the document.
func (f *Fpdf) SetProtection(actionFlag byte, userPassStr, ownerPassStr string) {
if f.err != nil {
return
}
f.protect.setProtection(actionFlag, userPassStr, ownerPassStr)
}
// OutputAndClose sends the PDF document to the writer specified by w. This
// method will close both f and w, even if an error is detected and no document
// is produced.
func (f *Fpdf) OutputAndClose(w io.WriteCloser) error {
f.Output(w)
w.Close()
return f.err
}
// OutputFileAndClose creates or truncates the file specified by fileStr and
// writes the PDF document to it. This method will close f and the newly
// written file, even if an error is detected and no document is produced.
//
// Most examples demonstrate the use of this method.
func (f *Fpdf) OutputFileAndClose(fileStr string) error {
if f.err == nil {
pdfFile, err := os.Create(fileStr)
if err == nil {
f.Output(pdfFile)
pdfFile.Close()
} else {
f.err = err
}
}
return f.err
}
// Output sends the PDF document to the writer specified by w. No output will
// take place if an error has occurred in the document generation process. w
// remains open after this function returns. After returning, f is in a closed
// state and its methods should not be called.
func (f *Fpdf) Output(w io.Writer) error {
if f.err != nil {
return f.err
}
// dbg("Output")
if f.state < 3 {
f.Close()
}
_, err := f.buffer.WriteTo(w)
if err != nil {
f.err = err
}
return f.err
}
func (f *Fpdf) getpagesizestr(sizeStr string) (size SizeType) {
if f.err != nil {
return
}
sizeStr = strings.ToLower(sizeStr)
// dbg("Size [%s]", sizeStr)
var ok bool
2021-03-02 15:39:29 +01:00
//20210302 archium addendum begin
//enable custom page formats
if strings.Contains(sizeStr, "x") {
var (
aString []string
aFloat []float64
aErr error
)
aString = strings.Split(sizeStr, "x")
for i := 0; i <= 1; i++ {
aFloat[i], aErr = strconv.ParseFloat(aString[i], 64)
if aErr != nil {
f.err = fmt.Errorf("unknown page size %s", sizeStr)
}
}
size, ok = SizeType{aFloat[0], aFloat[1]}, true
} else {
//20210302 archium addendum end
size, ok = f.stdPageSizes[sizeStr]
//20210302 archium addendum begin
}
//20210302 archium addendum end
2021-03-02 13:27:45 +01:00
if ok {
// dbg("found %s", sizeStr)
size.Wd /= f.k
size.Ht /= f.k
} else {
f.err = fmt.Errorf("unknown page size %s", sizeStr)
}
return
}
// GetPageSizeStr returns the SizeType for the given sizeStr (that is A4, A3, etc..)
func (f *Fpdf) GetPageSizeStr(sizeStr string) (size SizeType) {
return f.getpagesizestr(sizeStr)
}
func (f *Fpdf) _getpagesize(size SizeType) SizeType {
if size.Wd > size.Ht {
size.Wd, size.Ht = size.Ht, size.Wd
}
return size
}
func (f *Fpdf) beginpage(orientationStr string, size SizeType) {
if f.err != nil {
return
}
f.page++
// add the default page boxes, if any exist, to the page
f.pageBoxes[f.page] = make(map[string]PageBox)
for box, pb := range f.defPageBoxes {
f.pageBoxes[f.page][box] = pb
}
f.pages = append(f.pages, bytes.NewBufferString(""))
f.pageLinks = append(f.pageLinks, make([]linkType, 0, 0))
f.pageAttachments = append(f.pageAttachments, []annotationAttach{})
f.state = 2
f.x = f.lMargin
f.y = f.tMargin
f.fontFamily = ""
// Check page size and orientation
if orientationStr == "" {
orientationStr = f.defOrientation
} else {
orientationStr = strings.ToUpper(orientationStr[0:1])
}
if orientationStr != f.curOrientation || size.Wd != f.curPageSize.Wd || size.Ht != f.curPageSize.Ht {
// New size or orientation
if orientationStr == "P" {
f.w = size.Wd
f.h = size.Ht
} else {
f.w = size.Ht
f.h = size.Wd
}
f.wPt = f.w * f.k
f.hPt = f.h * f.k
f.pageBreakTrigger = f.h - f.bMargin
f.curOrientation = orientationStr
f.curPageSize = size
}
if orientationStr != f.defOrientation || size.Wd != f.defPageSize.Wd || size.Ht != f.defPageSize.Ht {
f.pageSizes[f.page] = SizeType{f.wPt, f.hPt}
}
return
}
func (f *Fpdf) endpage() {
f.EndLayer()
f.state = 1
}
// Load a font definition file from the given Reader
func (f *Fpdf) loadfont(r io.Reader) (def fontDefType) {
if f.err != nil {
return
}
// dbg("Loading font [%s]", fontStr)
var buf bytes.Buffer
_, err := buf.ReadFrom(r)
if err != nil {
f.err = err
return
}
err = json.Unmarshal(buf.Bytes(), &def)
if err != nil {
f.err = err
return
}
if def.i, err = generateFontID(def); err != nil {
f.err = err
}
// dump(def)
return
}
// Escape special characters in strings
func (f *Fpdf) escape(s string) string {
s = strings.Replace(s, "\\", "\\\\", -1)
s = strings.Replace(s, "(", "\\(", -1)
s = strings.Replace(s, ")", "\\)", -1)
s = strings.Replace(s, "\r", "\\r", -1)
return s
}
// textstring formats a text string
func (f *Fpdf) textstring(s string) string {
if f.protect.encrypted {
b := []byte(s)
f.protect.rc4(uint32(f.n), &b)
s = string(b)
}
return "(" + f.escape(s) + ")"
}
func blankCount(str string) (count int) {
l := len(str)
for j := 0; j < l; j++ {
if byte(' ') == str[j] {
count++
}
}
return
}
// SetUnderlineThickness accepts a multiplier for adjusting the text underline
// thickness, defaulting to 1. See SetUnderlineThickness example.
func (f *Fpdf) SetUnderlineThickness(thickness float64) {
f.userUnderlineThickness = thickness
}
// Underline text
func (f *Fpdf) dounderline(x, y float64, txt string) string {
up := float64(f.currentFont.Up)
ut := float64(f.currentFont.Ut) * f.userUnderlineThickness
w := f.GetStringWidth(txt) + f.ws*float64(blankCount(txt))
return sprintf("%.2f %.2f %.2f %.2f re f", x*f.k,
(f.h-(y-up/1000*f.fontSize))*f.k, w*f.k, -ut/1000*f.fontSizePt)
}
func (f *Fpdf) dostrikeout(x, y float64, txt string) string {
up := float64(f.currentFont.Up)
ut := float64(f.currentFont.Ut)
w := f.GetStringWidth(txt) + f.ws*float64(blankCount(txt))
return sprintf("%.2f %.2f %.2f %.2f re f", x*f.k,
(f.h-(y+4*up/1000*f.fontSize))*f.k, w*f.k, -ut/1000*f.fontSizePt)
}
func bufEqual(buf []byte, str string) bool {
return string(buf[0:len(str)]) == str
}
func be16(buf []byte) int {
return 256*int(buf[0]) + int(buf[1])
}
func (f *Fpdf) newImageInfo() *ImageInfoType {
// default dpi to 72 unless told otherwise
return &ImageInfoType{scale: f.k, dpi: 72}
}
// parsejpg extracts info from io.Reader with JPEG data
// Thank you, Bruno Michel, for providing this code.
func (f *Fpdf) parsejpg(r io.Reader) (info *ImageInfoType) {
info = f.newImageInfo()
var (
data bytes.Buffer
err error
)
_, err = data.ReadFrom(r)
if err != nil {
f.err = err
return
}
info.data = data.Bytes()
config, err := jpeg.DecodeConfig(bytes.NewReader(info.data))
if err != nil {
f.err = err
return
}
info.w = float64(config.Width)
info.h = float64(config.Height)
info.f = "DCTDecode"
info.bpc = 8
switch config.ColorModel {
case color.GrayModel:
info.cs = "DeviceGray"
case color.YCbCrModel:
info.cs = "DeviceRGB"
case color.CMYKModel:
info.cs = "DeviceCMYK"
default:
f.err = fmt.Errorf("image JPEG buffer has unsupported color space (%v)", config.ColorModel)
return
}
return
}
// parsepng extracts info from a PNG data
func (f *Fpdf) parsepng(r io.Reader, readdpi bool) (info *ImageInfoType) {
buf, err := bufferFromReader(r)
if err != nil {
f.err = err
return
}
return f.parsepngstream(buf, readdpi)
}
func (f *Fpdf) readBeInt32(r io.Reader) (val int32) {
err := binary.Read(r, binary.BigEndian, &val)
if err != nil && err != io.EOF {
f.err = err
}
return
}
func (f *Fpdf) readByte(r io.Reader) (val byte) {
err := binary.Read(r, binary.BigEndian, &val)
if err != nil {
f.err = err
}
return
}
// parsegif extracts info from a GIF data (via PNG conversion)
func (f *Fpdf) parsegif(r io.Reader) (info *ImageInfoType) {
data, err := bufferFromReader(r)
if err != nil {
f.err = err
return
}
var img image.Image
img, err = gif.Decode(data)
if err != nil {
f.err = err
return
}
pngBuf := new(bytes.Buffer)
err = png.Encode(pngBuf, img)
if err != nil {
f.err = err
return
}
return f.parsepngstream(pngBuf, false)
}
// newobj begins a new object
func (f *Fpdf) newobj() {
// dbg("newobj")
f.n++
for j := len(f.offsets); j <= f.n; j++ {
f.offsets = append(f.offsets, 0)
}
f.offsets[f.n] = f.buffer.Len()
f.outf("%d 0 obj", f.n)
}
func (f *Fpdf) putstream(b []byte) {
// dbg("putstream")
if f.protect.encrypted {
f.protect.rc4(uint32(f.n), &b)
}
f.out("stream")
f.out(string(b))
f.out("endstream")
}
// out; Add a line to the document
func (f *Fpdf) out(s string) {
if f.state == 2 {
f.pages[f.page].WriteString(s)
f.pages[f.page].WriteString("\n")
} else {
f.buffer.WriteString(s)
f.buffer.WriteString("\n")
}
}
// outbuf adds a buffered line to the document
func (f *Fpdf) outbuf(r io.Reader) {
if f.state == 2 {
f.pages[f.page].ReadFrom(r)
f.pages[f.page].WriteString("\n")
} else {
f.buffer.ReadFrom(r)
f.buffer.WriteString("\n")
}
}
// RawWriteStr writes a string directly to the PDF generation buffer. This is a
// low-level function that is not required for normal PDF construction. An
// understanding of the PDF specification is needed to use this method
// correctly.
func (f *Fpdf) RawWriteStr(str string) {
f.out(str)
}
// RawWriteBuf writes the contents of the specified buffer directly to the PDF
// generation buffer. This is a low-level function that is not required for
// normal PDF construction. An understanding of the PDF specification is needed
// to use this method correctly.
func (f *Fpdf) RawWriteBuf(r io.Reader) {
f.outbuf(r)
}
// outf adds a formatted line to the document
func (f *Fpdf) outf(fmtStr string, args ...interface{}) {
f.out(sprintf(fmtStr, args...))
}
// SetDefaultCatalogSort sets the default value of the catalog sort flag that
// will be used when initializing a new Fpdf instance. See SetCatalogSort() for
// more details.
func SetDefaultCatalogSort(flag bool) {
gl.catalogSort = flag
}
// SetCatalogSort sets a flag that will be used, if true, to consistently order
// the document's internal resource catalogs. This method is typically only
// used for test purposes to facilitate PDF comparison.
func (f *Fpdf) SetCatalogSort(flag bool) {
f.catalogSort = flag
}
// SetDefaultCreationDate sets the default value of the document creation date
// that will be used when initializing a new Fpdf instance. See
// SetCreationDate() for more details.
func SetDefaultCreationDate(tm time.Time) {
gl.creationDate = tm
}
// SetDefaultModificationDate sets the default value of the document modification date
// that will be used when initializing a new Fpdf instance. See
// SetCreationDate() for more details.
func SetDefaultModificationDate(tm time.Time) {
gl.modDate = tm
}
// SetCreationDate fixes the document's internal CreationDate value. By
// default, the time when the document is generated is used for this value.
// This method is typically only used for testing purposes to facilitate PDF
// comparison. Specify a zero-value time to revert to the default behavior.
func (f *Fpdf) SetCreationDate(tm time.Time) {
f.creationDate = tm
}
// SetModificationDate fixes the document's internal ModDate value.
// See `SetCreationDate` for more details.
func (f *Fpdf) SetModificationDate(tm time.Time) {
f.modDate = tm
}
// SetJavascript adds Adobe JavaScript to the document.
func (f *Fpdf) SetJavascript(script string) {
f.javascript = &script
}
// RegisterAlias adds an (alias, replacement) pair to the document so we can
// replace all occurrences of that alias after writing but before the document
// is closed. Functions ExampleFpdf_RegisterAlias() and
// ExampleFpdf_RegisterAlias_utf8() in fpdf_test.go demonstrate this method.
func (f *Fpdf) RegisterAlias(alias, replacement string) {
// Note: map[string]string assignments embed literal escape ("\00") sequences
// into utf16 key and value strings. Consequently, subsequent search/replace
// operations will fail unexpectedly if utf8toutf16() conversions take place
// here. Instead, conversions are deferred until the actual search/replace
// operation takes place when the PDF output is generated.
f.aliasMap[alias] = replacement
}
func (f *Fpdf) replaceAliases() {
for mode := 0; mode < 2; mode++ {
for alias, replacement := range f.aliasMap {
if mode == 1 {
alias = utf8toutf16(alias, false)
replacement = utf8toutf16(replacement, false)
}
for n := 1; n <= f.page; n++ {
s := f.pages[n].String()
if strings.Contains(s, alias) {
s = strings.Replace(s, alias, replacement, -1)
f.pages[n].Truncate(0)
f.pages[n].WriteString(s)
}
}
}
}
}
func (f *Fpdf) putpages() {
var wPt, hPt float64
var pageSize SizeType
var ok bool
nb := f.page
if len(f.aliasNbPagesStr) > 0 {
// Replace number of pages
f.RegisterAlias(f.aliasNbPagesStr, sprintf("%d", nb))
}
f.replaceAliases()
if f.defOrientation == "P" {
wPt = f.defPageSize.Wd * f.k
hPt = f.defPageSize.Ht * f.k
} else {
wPt = f.defPageSize.Ht * f.k
hPt = f.defPageSize.Wd * f.k
}
pagesObjectNumbers := make([]int, nb+1) // 1-based
for n := 1; n <= nb; n++ {
// Page
f.newobj()
pagesObjectNumbers[n] = f.n // save for /Kids
f.out("<</Type /Page")
f.out("/Parent 1 0 R")
pageSize, ok = f.pageSizes[n]
if ok {
f.outf("/MediaBox [0 0 %.2f %.2f]", pageSize.Wd, pageSize.Ht)
}
for t, pb := range f.pageBoxes[n] {
f.outf("/%s [%.2f %.2f %.2f %.2f]", t, pb.X, pb.Y, pb.Wd, pb.Ht)
}
f.out("/Resources 2 0 R")
// Links
if len(f.pageLinks[n])+len(f.pageAttachments[n]) > 0 {
var annots fmtBuffer
annots.printf("/Annots [")
for _, pl := range f.pageLinks[n] {
annots.printf("<</Type /Annot /Subtype /Link /Rect [%.2f %.2f %.2f %.2f] /Border [0 0 0] ",
pl.x, pl.y, pl.x+pl.wd, pl.y-pl.ht)
if pl.link == 0 {
annots.printf("/A <</S /URI /URI %s>>>>", f.textstring(pl.linkStr))
} else {
l := f.links[pl.link]
var sz SizeType
var h float64
sz, ok = f.pageSizes[l.page]
if ok {
h = sz.Ht
} else {
h = hPt
}
// dbg("h [%.2f], l.y [%.2f] f.k [%.2f]\n", h, l.y, f.k)
annots.printf("/Dest [%d 0 R /XYZ 0 %.2f null]>>", 1+2*l.page, h-l.y*f.k)
}
}
f.putAttachmentAnnotationLinks(&annots, n)
annots.printf("]")
f.out(annots.String())
}
if f.pdfVersion > "1.3" {
f.out("/Group <</Type /Group /S /Transparency /CS /DeviceRGB>>")
}
f.outf("/Contents %d 0 R>>", f.n+1)
f.out("endobj")
// Page content
f.newobj()
if f.compress {
data := sliceCompress(f.pages[n].Bytes())
f.outf("<</Filter /FlateDecode /Length %d>>", len(data))
f.putstream(data)
} else {
f.outf("<</Length %d>>", f.pages[n].Len())
f.putstream(f.pages[n].Bytes())
}
f.out("endobj")
}
// Pages root
f.offsets[1] = f.buffer.Len()
f.out("1 0 obj")
f.out("<</Type /Pages")
var kids fmtBuffer
kids.printf("/Kids [")
for i := 1; i <= nb; i++ {
kids.printf("%d 0 R ", pagesObjectNumbers[i])
}
kids.printf("]")
f.out(kids.String())
f.outf("/Count %d", nb)
f.outf("/MediaBox [0 0 %.2f %.2f]", wPt, hPt)
f.out(">>")
f.out("endobj")
}
func (f *Fpdf) putfonts() {
if f.err != nil {
return
}
nf := f.n
for _, diff := range f.diffs {
// Encodings
f.newobj()
f.outf("<</Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [%s]>>", diff)
f.out("endobj")
}
{
var fileList []string
var info fontFileType
var file string
for file = range f.fontFiles {
fileList = append(fileList, file)
}
if f.catalogSort {
sort.SliceStable(fileList, func(i, j int) bool { return fileList[i] < fileList[j] })
}
for _, file = range fileList {
info = f.fontFiles[file]
if info.fontType != "UTF8" {
f.newobj()
info.n = f.n
f.fontFiles[file] = info
var font []byte
if info.embedded {
font = info.content
} else {
var err error
font, err = f.loadFontFile(file)
if err != nil {
f.err = err
return
}
}
compressed := file[len(file)-2:] == ".z"
if !compressed && info.length2 > 0 {
buf := font[6:info.length1]
buf = append(buf, font[6+info.length1+6:info.length2]...)
font = buf
}
f.outf("<</Length %d", len(font))
if compressed {
f.out("/Filter /FlateDecode")
}
f.outf("/Length1 %d", info.length1)
if info.length2 > 0 {
f.outf("/Length2 %d /Length3 0", info.length2)
}
f.out(">>")
f.putstream(font)
f.out("endobj")
}
}
}
{
var keyList []string
var font fontDefType
var key string
for key = range f.fonts {
keyList = append(keyList, key)
}
if f.catalogSort {
sort.SliceStable(keyList, func(i, j int) bool { return keyList[i] < keyList[j] })
}
for _, key = range keyList {
font = f.fonts[key]
// Font objects
font.N = f.n + 1
f.fonts[key] = font
tp := font.Tp
name := font.Name
switch tp {
case "Core":
// Core font
f.newobj()
f.out("<</Type /Font")
f.outf("/BaseFont /%s", name)
f.out("/Subtype /Type1")
if name != "Symbol" && name != "ZapfDingbats" {
f.out("/Encoding /WinAnsiEncoding")
}
f.out(">>")
f.out("endobj")
case "Type1":
fallthrough
case "TrueType":
// Additional Type1 or TrueType/OpenType font
f.newobj()
f.out("<</Type /Font")
f.outf("/BaseFont /%s", name)
f.outf("/Subtype /%s", tp)
f.out("/FirstChar 32 /LastChar 255")
f.outf("/Widths %d 0 R", f.n+1)
f.outf("/FontDescriptor %d 0 R", f.n+2)
if font.DiffN > 0 {
f.outf("/Encoding %d 0 R", nf+font.DiffN)
} else {
f.out("/Encoding /WinAnsiEncoding")
}
f.out(">>")
f.out("endobj")
// Widths
f.newobj()
var s fmtBuffer
s.WriteString("[")
for j := 32; j < 256; j++ {
s.printf("%d ", font.Cw[j])
}
s.WriteString("]")
f.out(s.String())
f.out("endobj")
// Descriptor
f.newobj()
s.Truncate(0)
s.printf("<</Type /FontDescriptor /FontName /%s ", name)
s.printf("/Ascent %d ", font.Desc.Ascent)
s.printf("/Descent %d ", font.Desc.Descent)
s.printf("/CapHeight %d ", font.Desc.CapHeight)
s.printf("/Flags %d ", font.Desc.Flags)
s.printf("/FontBBox [%d %d %d %d] ", font.Desc.FontBBox.Xmin, font.Desc.FontBBox.Ymin,
font.Desc.FontBBox.Xmax, font.Desc.FontBBox.Ymax)
s.printf("/ItalicAngle %d ", font.Desc.ItalicAngle)
s.printf("/StemV %d ", font.Desc.StemV)
s.printf("/MissingWidth %d ", font.Desc.MissingWidth)
var suffix string
if tp != "Type1" {
suffix = "2"
}
s.printf("/FontFile%s %d 0 R>>", suffix, f.fontFiles[font.File].n)
f.out(s.String())
f.out("endobj")
case "UTF8":
fontName := "utf8" + font.Name
usedRunes := font.usedRunes
delete(usedRunes, 0)
utf8FontStream := font.utf8File.GenerateCutFont(usedRunes)
utf8FontSize := len(utf8FontStream)
compressedFontStream := sliceCompress(utf8FontStream)
CodeSignDictionary := font.utf8File.CodeSymbolDictionary
delete(CodeSignDictionary, 0)
f.newobj()
f.out(fmt.Sprintf("<</Type /Font\n/Subtype /Type0\n/BaseFont /%s\n/Encoding /Identity-H\n/DescendantFonts [%d 0 R]\n/ToUnicode %d 0 R>>\n"+"endobj", fontName, f.n+1, f.n+2))
f.newobj()
f.out("<</Type /Font\n/Subtype /CIDFontType2\n/BaseFont /" + fontName + "\n" +
"/CIDSystemInfo " + strconv.Itoa(f.n+2) + " 0 R\n/FontDescriptor " + strconv.Itoa(f.n+3) + " 0 R")
if font.Desc.MissingWidth != 0 {
f.out("/DW " + strconv.Itoa(font.Desc.MissingWidth) + "")
}
f.generateCIDFontMap(&font, font.utf8File.LastRune)
f.out("/CIDToGIDMap " + strconv.Itoa(f.n+4) + " 0 R>>")
f.out("endobj")
f.newobj()
f.out("<</Length " + strconv.Itoa(len(toUnicode)) + ">>")
f.putstream([]byte(toUnicode))
f.out("endobj")
// CIDInfo
f.newobj()
f.out("<</Registry (Adobe)\n/Ordering (UCS)\n/Supplement 0>>")
f.out("endobj")
// Font descriptor
f.newobj()
var s fmtBuffer
s.printf("<</Type /FontDescriptor /FontName /%s\n /Ascent %d", fontName, font.Desc.Ascent)
s.printf(" /Descent %d", font.Desc.Descent)
s.printf(" /CapHeight %d", font.Desc.CapHeight)
v := font.Desc.Flags
v = v | 4
v = v &^ 32
s.printf(" /Flags %d", v)
s.printf("/FontBBox [%d %d %d %d] ", font.Desc.FontBBox.Xmin, font.Desc.FontBBox.Ymin,
font.Desc.FontBBox.Xmax, font.Desc.FontBBox.Ymax)
s.printf(" /ItalicAngle %d", font.Desc.ItalicAngle)
s.printf(" /StemV %d", font.Desc.StemV)
s.printf(" /MissingWidth %d", font.Desc.MissingWidth)
s.printf("/FontFile2 %d 0 R", f.n+2)
s.printf(">>")
f.out(s.String())
f.out("endobj")
// Embed CIDToGIDMap
cidToGidMap := make([]byte, 256*256*2)
for cc, glyph := range CodeSignDictionary {
cidToGidMap[cc*2] = byte(glyph >> 8)
cidToGidMap[cc*2+1] = byte(glyph & 0xFF)
}
cidToGidMap = sliceCompress(cidToGidMap)
f.newobj()
f.out("<</Length " + strconv.Itoa(len(cidToGidMap)) + "/Filter /FlateDecode>>")
f.putstream(cidToGidMap)
f.out("endobj")
//Font file
f.newobj()
f.out("<</Length " + strconv.Itoa(len(compressedFontStream)))
f.out("/Filter /FlateDecode")
f.out("/Length1 " + strconv.Itoa(utf8FontSize))
f.out(">>")
f.putstream(compressedFontStream)
f.out("endobj")
default:
f.err = fmt.Errorf("unsupported font type: %s", tp)
return
}
}
}
return
}
func (f *Fpdf) generateCIDFontMap(font *fontDefType, LastRune int) {
rangeID := 0
cidArray := make(map[int]*untypedKeyMap)
cidArrayKeys := make([]int, 0)
prevCid := -2
prevWidth := -1
interval := false
startCid := 1
cwLen := LastRune + 1
// for each character
for cid := startCid; cid < cwLen; cid++ {
if font.Cw[cid] == 0x00 {
continue
}
width := font.Cw[cid]
if width == 65535 {
width = 0
}
if numb, OK := font.usedRunes[cid]; cid > 255 && (!OK || numb == 0) {
continue
}
if cid == prevCid+1 {
if width == prevWidth {
if width == cidArray[rangeID].get(0) {
cidArray[rangeID].put(nil, width)
} else {
cidArray[rangeID].pop()
rangeID = prevCid
r := untypedKeyMap{
valueSet: make([]int, 0),
keySet: make([]interface{}, 0),
}
cidArray[rangeID] = &r
cidArrayKeys = append(cidArrayKeys, rangeID)
cidArray[rangeID].put(nil, prevWidth)
cidArray[rangeID].put(nil, width)
}
interval = true
cidArray[rangeID].put("interval", 1)
} else {
if interval {
// new range
rangeID = cid
r := untypedKeyMap{
valueSet: make([]int, 0),
keySet: make([]interface{}, 0),
}
cidArray[rangeID] = &r
cidArrayKeys = append(cidArrayKeys, rangeID)
cidArray[rangeID].put(nil, width)
} else {
cidArray[rangeID].put(nil, width)
}
interval = false
}
} else {
rangeID = cid
r := untypedKeyMap{
valueSet: make([]int, 0),
keySet: make([]interface{}, 0),
}
cidArray[rangeID] = &r
cidArrayKeys = append(cidArrayKeys, rangeID)
cidArray[rangeID].put(nil, width)
interval = false
}
prevCid = cid
prevWidth = width
}
previousKey := -1
nextKey := -1
isInterval := false
for g := 0; g < len(cidArrayKeys); {
key := cidArrayKeys[g]
ws := *cidArray[key]
cws := len(ws.keySet)
if (key == nextKey) && (!isInterval) && (ws.getIndex("interval") < 0 || cws < 4) {
if cidArray[key].getIndex("interval") >= 0 {
cidArray[key].delete("interval")
}
cidArray[previousKey] = arrayMerge(cidArray[previousKey], cidArray[key])
cidArrayKeys = remove(cidArrayKeys, key)
} else {
g++
previousKey = key
}
nextKey = key + cws
// ui := ws.getIndex("interval")
// ui = ui + 1
if ws.getIndex("interval") >= 0 {
if cws > 3 {
isInterval = true
} else {
isInterval = false
}
cidArray[key].delete("interval")
nextKey--
} else {
isInterval = false
}
}
var w fmtBuffer
for _, k := range cidArrayKeys {
ws := cidArray[k]
if len(arrayCountValues(ws.valueSet)) == 1 {
w.printf(" %d %d %d", k, k+len(ws.valueSet)-1, ws.get(0))
} else {
w.printf(" %d [ %s ]\n", k, implode(" ", ws.valueSet))
}
}
f.out("/W [" + w.String() + " ]")
}
func implode(sep string, arr []int) string {
var s fmtBuffer
for i := 0; i < len(arr)-1; i++ {
s.printf("%v", arr[i])
s.printf(sep)
}
if len(arr) > 0 {
s.printf("%v", arr[len(arr)-1])
}
return s.String()
}
// arrayCountValues counts the occurrences of each item in the $mp array.
func arrayCountValues(mp []int) map[int]int {
answer := make(map[int]int)
for _, v := range mp {
answer[v] = answer[v] + 1
}
return answer
}
func (f *Fpdf) loadFontFile(name string) ([]byte, error) {
if f.fontLoader != nil {
reader, err := f.fontLoader.Open(name)
if err == nil {
data, err := ioutil.ReadAll(reader)
if closer, ok := reader.(io.Closer); ok {
closer.Close()
}
return data, err
}
}
return ioutil.ReadFile(path.Join(f.fontpath, name))
}
func (f *Fpdf) putimages() {
var keyList []string
var key string
for key = range f.images {
keyList = append(keyList, key)
}
// Sort the keyList []string by the corresponding image's width.
if f.catalogSort {
sort.SliceStable(keyList, func(i, j int) bool { return f.images[keyList[i]].w < f.images[keyList[j]].w })
}
// Maintain a list of inserted image SHA-1 hashes, with their
// corresponding object ID number.
insertedImages := map[string]int{}
for _, key = range keyList {
image := f.images[key]
// Check if this image has already been inserted using it's SHA-1 hash.
insertedImageObjN, isFound := insertedImages[image.i]
// If found, skip inserting the image as a new object, and
// use the object ID from the insertedImages map.
// If not, insert the image into the PDF and store the object ID.
if isFound {
image.n = insertedImageObjN
} else {
f.putimage(image)
insertedImages[image.i] = image.n
}
}
}
func (f *Fpdf) putimage(info *ImageInfoType) {
f.newobj()
info.n = f.n
f.out("<</Type /XObject")
f.out("/Subtype /Image")
f.outf("/Width %d", int(info.w))
f.outf("/Height %d", int(info.h))
if info.cs == "Indexed" {
f.outf("/ColorSpace [/Indexed /DeviceRGB %d %d 0 R]", len(info.pal)/3-1, f.n+1)
} else {
f.outf("/ColorSpace /%s", info.cs)
if info.cs == "DeviceCMYK" {
f.out("/Decode [1 0 1 0 1 0 1 0]")
}
}
f.outf("/BitsPerComponent %d", info.bpc)
if len(info.f) > 0 {
f.outf("/Filter /%s", info.f)
}
if len(info.dp) > 0 {
f.outf("/DecodeParms <<%s>>", info.dp)
}
if len(info.trns) > 0 {
var trns fmtBuffer
for _, v := range info.trns {
trns.printf("%d %d ", v, v)
}
f.outf("/Mask [%s]", trns.String())
}
if info.smask != nil {
f.outf("/SMask %d 0 R", f.n+1)
}
f.outf("/Length %d>>", len(info.data))
f.putstream(info.data)
f.out("endobj")
// Soft mask
if len(info.smask) > 0 {
smask := &ImageInfoType{
w: info.w,
h: info.h,
cs: "DeviceGray",
bpc: 8,
f: info.f,
dp: sprintf("/Predictor 15 /Colors 1 /BitsPerComponent 8 /Columns %d", int(info.w)),
data: info.smask,
scale: f.k,
}
f.putimage(smask)
}
// Palette
if info.cs == "Indexed" {
f.newobj()
if f.compress {
pal := sliceCompress(info.pal)
f.outf("<</Filter /FlateDecode /Length %d>>", len(pal))
f.putstream(pal)
} else {
f.outf("<</Length %d>>", len(info.pal))
f.putstream(info.pal)
}
f.out("endobj")
}
}
func (f *Fpdf) putxobjectdict() {
{
var image *ImageInfoType
var key string
var keyList []string
for key = range f.images {
keyList = append(keyList, key)
}
if f.catalogSort {
sort.SliceStable(keyList, func(i, j int) bool { return f.images[keyList[i]].i < f.images[keyList[j]].i })
}
for _, key = range keyList {
image = f.images[key]
f.outf("/I%s %d 0 R", image.i, image.n)
}
}
{
var keyList []string
var key string
var tpl Template
keyList = templateKeyList(f.templates, f.catalogSort)
for _, key = range keyList {
tpl = f.templates[key]
// for _, tpl := range f.templates {
id := tpl.ID()
if objID, ok := f.templateObjects[id]; ok {
f.outf("/TPL%s %d 0 R", id, objID)
}
}
}
{
for tplName, objID := range f.importedTplObjs {
// here replace obj id hash with n
f.outf("%s %d 0 R", tplName, f.importedTplIDs[objID])
}
}
}
func (f *Fpdf) putresourcedict() {
f.out("/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]")
f.out("/Font <<")
{
var keyList []string
var font fontDefType
var key string
for key = range f.fonts {
keyList = append(keyList, key)
}
if f.catalogSort {
sort.SliceStable(keyList, func(i, j int) bool { return f.fonts[keyList[i]].i < f.fonts[keyList[j]].i })
}
for _, key = range keyList {
font = f.fonts[key]
f.outf("/F%s %d 0 R", font.i, font.N)
}
}
f.out(">>")
f.out("/XObject <<")
f.putxobjectdict()
f.out(">>")
count := len(f.blendList)
if count > 1 {
f.out("/ExtGState <<")
for j := 1; j < count; j++ {
f.outf("/GS%d %d 0 R", j, f.blendList[j].objNum)
}
f.out(">>")
}
count = len(f.gradientList)
if count > 1 {
f.out("/Shading <<")
for j := 1; j < count; j++ {
f.outf("/Sh%d %d 0 R", j, f.gradientList[j].objNum)
}
f.out(">>")
}
// Layers
f.layerPutResourceDict()
f.spotColorPutResourceDict()
}
func (f *Fpdf) putBlendModes() {
count := len(f.blendList)
for j := 1; j < count; j++ {
bl := f.blendList[j]
f.newobj()
f.blendList[j].objNum = f.n
f.outf("<</Type /ExtGState /ca %s /CA %s /BM /%s>>",
bl.fillStr, bl.strokeStr, bl.modeStr)
f.out("endobj")
}
}
func (f *Fpdf) putGradients() {
count := len(f.gradientList)
for j := 1; j < count; j++ {
var f1 int
gr := f.gradientList[j]
if gr.tp == 2 || gr.tp == 3 {
f.newobj()
f.outf("<</FunctionType 2 /Domain [0.0 1.0] /C0 [%s] /C1 [%s] /N 1>>", gr.clr1Str, gr.clr2Str)
f.out("endobj")
f1 = f.n
}
f.newobj()
f.outf("<</ShadingType %d /ColorSpace /DeviceRGB", gr.tp)
if gr.tp == 2 {
f.outf("/Coords [%.5f %.5f %.5f %.5f] /Function %d 0 R /Extend [true true]>>",
gr.x1, gr.y1, gr.x2, gr.y2, f1)
} else if gr.tp == 3 {
f.outf("/Coords [%.5f %.5f 0 %.5f %.5f %.5f] /Function %d 0 R /Extend [true true]>>",
gr.x1, gr.y1, gr.x2, gr.y2, gr.r, f1)
}
f.out("endobj")
f.gradientList[j].objNum = f.n
}
}
func (f *Fpdf) putjavascript() {
if f.javascript == nil {
return
}
f.newobj()
f.nJs = f.n
f.out("<<")
f.outf("/Names [(EmbeddedJS) %d 0 R]", f.n+1)
f.out(">>")
f.out("endobj")
f.newobj()
f.out("<<")
f.out("/S /JavaScript")
f.outf("/JS %s", f.textstring(*f.javascript))
f.out(">>")
f.out("endobj")
}
func (f *Fpdf) putresources() {
if f.err != nil {
return
}
f.layerPutLayers()
f.putBlendModes()
f.putGradients()
f.putSpotColors()
f.putfonts()
if f.err != nil {
return
}
f.putimages()
f.putTemplates()
f.putImportedTemplates() // gofpdi
// Resource dictionary
f.offsets[2] = f.buffer.Len()
f.out("2 0 obj")
f.out("<<")
f.putresourcedict()
f.out(">>")
f.out("endobj")
f.putjavascript()
if f.protect.encrypted {
f.newobj()
f.protect.objNum = f.n
f.out("<<")
f.out("/Filter /Standard")
f.out("/V 1")
f.out("/R 2")
f.outf("/O (%s)", f.escape(string(f.protect.oValue)))
f.outf("/U (%s)", f.escape(string(f.protect.uValue)))
f.outf("/P %d", f.protect.pValue)
f.out(">>")
f.out("endobj")
}
return
}
// returns Now() if tm is zero
func timeOrNow(tm time.Time) time.Time {
if tm.IsZero() {
return time.Now()
}
return tm
}
func (f *Fpdf) putinfo() {
if len(f.producer) > 0 {
f.outf("/Producer %s", f.textstring(f.producer))
}
if len(f.title) > 0 {
f.outf("/Title %s", f.textstring(f.title))
}
if len(f.subject) > 0 {
f.outf("/Subject %s", f.textstring(f.subject))
}
if len(f.author) > 0 {
f.outf("/Author %s", f.textstring(f.author))
}
if len(f.keywords) > 0 {
f.outf("/Keywords %s", f.textstring(f.keywords))
}
if len(f.creator) > 0 {
f.outf("/Creator %s", f.textstring(f.creator))
}
creation := timeOrNow(f.creationDate)
f.outf("/CreationDate %s", f.textstring("D:"+creation.Format("20060102150405")))
mod := timeOrNow(f.modDate)
f.outf("/ModDate %s", f.textstring("D:"+mod.Format("20060102150405")))
}
func (f *Fpdf) putcatalog() {
f.out("/Type /Catalog")
f.out("/Pages 1 0 R")
switch f.zoomMode {
case "fullpage":
f.out("/OpenAction [3 0 R /Fit]")
case "fullwidth":
f.out("/OpenAction [3 0 R /FitH null]")
case "real":
f.out("/OpenAction [3 0 R /XYZ null null 1]")
}
// } else if !is_string($this->zoomMode))
// $this->out('/OpenAction [3 0 R /XYZ null null '.sprintf('%.2f',$this->zoomMode/100).']');
switch f.layoutMode {
case "single", "SinglePage":
f.out("/PageLayout /SinglePage")
case "continuous", "OneColumn":
f.out("/PageLayout /OneColumn")
case "two", "TwoColumnLeft":
f.out("/PageLayout /TwoColumnLeft")
case "TwoColumnRight":
f.out("/PageLayout /TwoColumnRight")
case "TwoPageLeft", "TwoPageRight":
if f.pdfVersion < "1.5" {
f.pdfVersion = "1.5"
}
f.out("/PageLayout /" + f.layoutMode)
}
// Bookmarks
if len(f.outlines) > 0 {
f.outf("/Outlines %d 0 R", f.outlineRoot)
f.out("/PageMode /UseOutlines")
}
// Layers
f.layerPutCatalog()
// Name dictionary :
// -> Javascript
// -> Embedded files
f.out("/Names <<")
// JavaScript
if f.javascript != nil {
f.outf("/JavaScript %d 0 R", f.nJs)
}
// Embedded files
f.outf("/EmbeddedFiles %s", f.getEmbeddedFiles())
f.out(">>")
}
func (f *Fpdf) putheader() {
if len(f.blendMap) > 0 && f.pdfVersion < "1.4" {
f.pdfVersion = "1.4"
}
f.outf("%%PDF-%s", f.pdfVersion)
}
func (f *Fpdf) puttrailer() {
f.outf("/Size %d", f.n+1)
f.outf("/Root %d 0 R", f.n)
f.outf("/Info %d 0 R", f.n-1)
if f.protect.encrypted {
f.outf("/Encrypt %d 0 R", f.protect.objNum)
f.out("/ID [()()]")
}
}
func (f *Fpdf) putxmp() {
if len(f.xmp) == 0 {
return
}
f.newobj()
f.outf("<< /Type /Metadata /Subtype /XML /Length %d >>", len(f.xmp))
f.putstream(f.xmp)
f.out("endobj")
}
func (f *Fpdf) putbookmarks() {
nb := len(f.outlines)
if nb > 0 {
lru := make(map[int]int)
level := 0
for i, o := range f.outlines {
if o.level > 0 {
parent := lru[o.level-1]
f.outlines[i].parent = parent
f.outlines[parent].last = i
if o.level > level {
f.outlines[parent].first = i
}
} else {
f.outlines[i].parent = nb
}
if o.level <= level && i > 0 {
prev := lru[o.level]
f.outlines[prev].next = i
f.outlines[i].prev = prev
}
lru[o.level] = i
level = o.level
}
n := f.n + 1
for _, o := range f.outlines {
f.newobj()
f.outf("<</Title %s", f.textstring(o.text))
f.outf("/Parent %d 0 R", n+o.parent)
if o.prev != -1 {
f.outf("/Prev %d 0 R", n+o.prev)
}
if o.next != -1 {
f.outf("/Next %d 0 R", n+o.next)
}
if o.first != -1 {
f.outf("/First %d 0 R", n+o.first)
}
if o.last != -1 {
f.outf("/Last %d 0 R", n+o.last)
}
f.outf("/Dest [%d 0 R /XYZ 0 %.2f null]", 1+2*o.p, (f.h-o.y)*f.k)
f.out("/Count 0>>")
f.out("endobj")
}
f.newobj()
f.outlineRoot = f.n
f.outf("<</Type /Outlines /First %d 0 R", n)
f.outf("/Last %d 0 R>>", n+lru[0])
f.out("endobj")
}
}
func (f *Fpdf) enddoc() {
if f.err != nil {
return
}
f.layerEndDoc()
f.putheader()
// Embedded files
f.putAttachments()
f.putAnnotationsAttachments()
f.putpages()
f.putresources()
if f.err != nil {
return
}
// Bookmarks
f.putbookmarks()
// Metadata
f.putxmp()
// Info
f.newobj()
f.out("<<")
f.putinfo()
f.out(">>")
f.out("endobj")
// Catalog
f.newobj()
f.out("<<")
f.putcatalog()
f.out(">>")
f.out("endobj")
// Cross-ref
o := f.buffer.Len()
f.out("xref")
f.outf("0 %d", f.n+1)
f.out("0000000000 65535 f ")
for j := 1; j <= f.n; j++ {
f.outf("%010d 00000 n ", f.offsets[j])
}
// Trailer
f.out("trailer")
f.out("<<")
f.puttrailer()
f.out(">>")
f.out("startxref")
f.outf("%d", o)
f.out("%%EOF")
f.state = 3
return
}
// Path Drawing
// MoveTo moves the stylus to (x, y) without drawing the path from the
// previous point. Paths must start with a MoveTo to set the original
// stylus location or the result is undefined.
//
// Create a "path" by moving a virtual stylus around the page (with
// MoveTo, LineTo, CurveTo, CurveBezierCubicTo, ArcTo & ClosePath)
// then draw it or fill it in (with DrawPath). The main advantage of
// using the path drawing routines rather than multiple Fpdf.Line is
// that PDF creates nice line joins at the angles, rather than just
// overlaying the lines.
func (f *Fpdf) MoveTo(x, y float64) {
f.point(x, y)
f.x, f.y = x, y
}
// LineTo creates a line from the current stylus location to (x, y), which
// becomes the new stylus location. Note that this only creates the line in
// the path; it does not actually draw the line on the page.
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) LineTo(x, y float64) {
f.outf("%.2f %.2f l", x*f.k, (f.h-y)*f.k)
f.x, f.y = x, y
}
// CurveTo creates a single-segment quadratic Bézier curve. The curve starts at
// the current stylus location and ends at the point (x, y). The control point
// (cx, cy) specifies the curvature. At the start point, the curve is tangent
// to the straight line between the current stylus location and the control
// point. At the end point, the curve is tangent to the straight line between
// the end point and the control point.
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) CurveTo(cx, cy, x, y float64) {
f.outf("%.5f %.5f %.5f %.5f v", cx*f.k, (f.h-cy)*f.k, x*f.k, (f.h-y)*f.k)
f.x, f.y = x, y
}
// CurveBezierCubicTo creates a single-segment cubic Bézier curve. The curve
// starts at the current stylus location and ends at the point (x, y). The
// control points (cx0, cy0) and (cx1, cy1) specify the curvature. At the
// current stylus, the curve is tangent to the straight line between the
// current stylus location and the control point (cx0, cy0). At the end point,
// the curve is tangent to the straight line between the end point and the
// control point (cx1, cy1).
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) CurveBezierCubicTo(cx0, cy0, cx1, cy1, x, y float64) {
f.curve(cx0, cy0, cx1, cy1, x, y)
f.x, f.y = x, y
}
// ClosePath creates a line from the current location to the last MoveTo point
// (if not the same) and mark the path as closed so the first and last lines
// join nicely.
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) ClosePath() {
f.outf("h")
}
// DrawPath actually draws the path on the page.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D".
// Path-painting operators as defined in the PDF specification are also
// allowed: "S" (Stroke the path), "s" (Close and stroke the path),
// "f" (fill the path, using the nonzero winding number), "f*"
// (Fill the path, using the even-odd rule), "B" (Fill and then stroke
// the path, using the nonzero winding number rule), "B*" (Fill and
// then stroke the path, using the even-odd rule), "b" (Close, fill,
// and then stroke the path, using the nonzero winding number rule) and
// "b*" (Close, fill, and then stroke the path, using the even-odd
// rule).
// Drawing uses the current draw color, line width, and cap style
// centered on the
// path. Filling uses the current fill color.
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) DrawPath(styleStr string) {
f.outf(fillDrawOp(styleStr))
}
// ArcTo draws an elliptical arc centered at point (x, y). rx and ry specify its
// horizontal and vertical radii. If the start of the arc is not at
// the current position, a connecting line will be drawn.
//
// degRotate specifies the angle that the arc will be rotated. degStart and
// degEnd specify the starting and ending angle of the arc. All angles are
// specified in degrees and measured counter-clockwise from the 3 o'clock
// position.
//
// styleStr can be "F" for filled, "D" for outlined only, or "DF" or "FD" for
// outlined and filled. An empty string will be replaced with "D". Drawing uses
// the current draw color, line width, and cap style centered on the arc's
// path. Filling uses the current fill color.
//
// The MoveTo() example demonstrates this method.
func (f *Fpdf) ArcTo(x, y, rx, ry, degRotate, degStart, degEnd float64) {
f.arc(x, y, rx, ry, degRotate, degStart, degEnd, "", true)
}
func (f *Fpdf) arc(x, y, rx, ry, degRotate, degStart, degEnd float64,
styleStr string, path bool) {
x *= f.k
y = (f.h - y) * f.k
rx *= f.k
ry *= f.k
segments := int(degEnd-degStart) / 60
if segments < 2 {
segments = 2
}
angleStart := degStart * math.Pi / 180
angleEnd := degEnd * math.Pi / 180
angleTotal := angleEnd - angleStart
dt := angleTotal / float64(segments)
dtm := dt / 3
if degRotate != 0 {
a := -degRotate * math.Pi / 180
f.outf("q %.5f %.5f %.5f %.5f %.5f %.5f cm",
math.Cos(a), -1*math.Sin(a),
math.Sin(a), math.Cos(a), x, y)
x = 0
y = 0
}
t := angleStart
a0 := x + rx*math.Cos(t)
b0 := y + ry*math.Sin(t)
c0 := -rx * math.Sin(t)
d0 := ry * math.Cos(t)
sx := a0 / f.k // start point of arc
sy := f.h - (b0 / f.k)
if path {
if f.x != sx || f.y != sy {
// Draw connecting line to start point
f.LineTo(sx, sy)
}
} else {
f.point(sx, sy)
}
for j := 1; j <= segments; j++ {
// Draw this bit of the total curve
t = (float64(j) * dt) + angleStart
a1 := x + rx*math.Cos(t)
b1 := y + ry*math.Sin(t)
c1 := -rx * math.Sin(t)
d1 := ry * math.Cos(t)
f.curve((a0+(c0*dtm))/f.k,
f.h-((b0+(d0*dtm))/f.k),
(a1-(c1*dtm))/f.k,
f.h-((b1-(d1*dtm))/f.k),
a1/f.k,
f.h-(b1/f.k))
a0 = a1
b0 = b1
c0 = c1
d0 = d1
if path {
f.x = a1 / f.k
f.y = f.h - (b1 / f.k)
}
}
if !path {
f.out(fillDrawOp(styleStr))
}
if degRotate != 0 {
f.out("Q")
}
}